Application of UAV based high-resolution remote sensing for crop monitoring
Abstract
Full Text:
PDFReferences
Perwej, Y., Haq, K., Parwej, F., Mumdouh, M., & Hassan, M. (2019). The internet of things (IoT) and its application domains. International Journal of Computer Applications, 975(8887), 182.
Boursianis, A. D., Papadopoulou, M. S., Diamantoulakis, P., Liopa-Tsakalidi, A., Barouchas, P., Salahas, G., ... & Goudos, S. K. (2020). Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: a comprehensive review. Internet of Things, 100187.
Yin, N., Liu, R., Zeng, B., & Liu, N. (2019, April). A review: UAV-based Remote Sensing. In IOP Conference Series: Materials Science and Engineering (Vol. 490, No. 6, p. 062014). IOP Publishing.
Liaghat, S., & Balasundram, S. K. (2010). A review: The role of remote sensing in precision agriculture. American journal of agricultural and biological sciences, 5(1), 50-5
Pettorelli, N., Laurance, W. F., O'Brien, T. G., Wegmann, M., Nagendra, H., & Turner, W. (2014). Satellite remote sensing for applied ecologists: opportunities and challenges. Journal of Applied Ecology, 51(4), 839-848.
Gao, D., Sun, Q., Hu, B., & Zhang, S. (2020). A framework for agricultural pest and disease monitoring based on internet-of-things and unmanned aerial vehicles. Sensors, 20(5), 1487.
Lu, B., & He, Y. (2017). Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 73-85.
Rango, A., Laliberte, A., Steele, C., Herrick, J. E., Bestelmeyer, B., Schmugge, T., ... & Jenkins, V. (2006). Using unmanned aerial vehicles for rangelands: current applications and future potentials. Environmental Practice, 8(3), 159-168.
Park, S. E., Benjamin, L. R., & Watkinson, A. R. (2003). The theory and application of plant competition models: an agronomic perspective. Annals of Botany, 92(6), 741-748.
Stroppiana, D., Villa, P., Sona, G., Ronchetti, G., Candiani, G., Pepe, M., ... & Boschetti, M. (2018). Early-season weed mapping in rice crops using multi-spectral UAV data. International journal of remote sensing, 39(15-16), 5432-5452.
Mutka, A. M., & Bart, R. S. (2015). Image-based phenotyping of plant disease symptoms. Frontiers in plant science, 5, 734.
Addiscott, T. M., Whitmore, A. P., & Powlson, D. S. (1991). Farming, fertilizers, and the nitrate problem. CAB International (CABI).
Barbedo, J. G. A. (2019). A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses. Drones, 3(2), 40.
Armenakis, C., Stark, B., Smith, B., Chen, Y., Persad, R. A., Li-Chee-Ming, J., ... & Cress, J. J. (2019). Unmanned Aerial Systems for Low-Altitude Remote Sensing. In Manual of Remote Sensing, 4th Edition (Vol. 231, No. 296, pp. 231-296). American Society for Photogrammetry and Remote Sensing.
Meng, H., Wang, G., Han, Y., Zhang, Z., Cao, Y., & Chen, J. (2019, November). A 3D Modeling Algorithm of Ground Crop Based on Light Multi-rotor UAV Lidar Remote Sensing Data. In 2019 IEEE International Conference on Unmanned Systems and Artificial Intelligence (ICUSAI) (pp. 246-250). IEEE.
Ahmad, S. F., & Dar, A. H. (2020). Precision Farming for Resource Use Efficiency. In Resources Use Efficiency in Agriculture (pp. 109-135). Springer, Singapore.
Hildmann, H., & Kovacs, E. (2019). Using unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response, civil security, and public safety. Drones, 3(3), 59.
Gómez-Candón, D., De Castro, A. I., & López-Granados, F. (2014). Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat. Precision Agriculture, 15(1), 44-56.
Zeng, L., Wardlow, B. D., Xiang, D., Hu, S., & Li, D. (2020). A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sensing of Environment, 237, 111511.
Fu, Z., Jiang, J., Gao, Y., Krienke, B., Wang, M., Zhong, K., ... & Liu, X. (2020). Wheat growth monitoring and yield estimation based on multi-rotor unmanned aerial vehicles. Remote Sensing, 12(3), 508.
Liu, Y., Cheng, T., Zhu, Y., Tian, Y., Cao, W., Yao, X., & Wang, N. (2016, July). Comparative analysis of vegetation indices, non-parametric and physical retrieval methods for monitoring nitrogen in wheat using UAV-based multispectral imagery. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 7362-7365). Ieee.
Furukawa, F., Maruyama, K., Saito, Y. K., & Kaneko, M. (2020). Corn height estimation using UAV for yield prediction and crop monitoring. In Unmanned Aerial Vehicle: Applications in Agriculture and Environment (pp. 51-69). Springer, Cham.
Abdulridha, J., Ampatzidis, Y., Roberts, P., & Kakarla, S. C. (2020). Detecting powdery mildew disease in squash at different stages using UAV-based hyperspectral imaging and artificial intelligence. Biosystems Engineering, 197, 135-148.
Zhang, L., Zhang, H., Niu, Y., & Han, W. (2019). Mapping maize water stress based on UAV multispectral remote sensing. Remote Sensing, 11(6), 605.
Wahab, I., Hall, O., & Jirström, M. (2018). Remote sensing of yields: Application of UAV imagery-derived NDVI for estimating maize vigor and yields in complex farming systems in sub-saharan Africa. Drones, 2(3), 28.
Stroppiana, D., Villa, P., Sona, G., Ronchetti, G., Candiani, G., Pepe, M., ... & Boschetti, M. (2018). Early-season weed mapping in rice crops using multi-spectral UAV data. International journal of remote sensing, 39(15-16), 5432-5452.
Zhou, X., Zheng, H. B., Xu, X. Q., He, J. Y., Ge, X. K., Yao, X., ... & Tian, Y. C. (2017). Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 246-255.
Holman, F. H., Riche, A. B., Michalski, A., Castle, M., Wooster, M. J., & Hawkesford, M. J. (2016). High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV-based remote sensing. Remote Sensing, 8(12), 1031.
Kanning, M., Kühling, I., Trautz, D., & Jarmer, T. (2018). High-resolution UAV-based hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield prediction. Remote Sensing, 10(12), 2000.
Gnyp, M. L., Bareth, G., Li, F., Lenz-Wiedemann, V. I., Koppe, W., Miao, Y., ... & Zhang, F. (2014). Development and implementation of a multiscale biomass model using hyperspectral vegetation indices for winter wheat in the North China Plain. International Journal of Applied Earth Observation and Geoinformation, 33, 232-242.
Muhammed, H. H. (2005). Hyperspectral crop reflectance data for characterizing and estimating fungal disease severity in wheat. Biosystems Engineering, 91(1), 9-20.
Zhang, M., Qin, Z., Liu, X., & Ustin, S. L. (2003). Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. International Journal of Applied Earth Observation and Geoinformation, 4(4), 295-310.
Mahlein, A. K., Steiner, U., Hillnhütter, C., Dehne, H. W., & Oerke, E. C. (2012). Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods, 8(1), 1-13.
Su, J., Liu, C., Coombes, M., Hu, X., Wang, C., Xu, X., ... & Chen, W. H. (2018). Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery. Computers and electronics in agriculture, 155, 157-166.
Zhang, D., Zhou, X., Zhang, J., Lan, Y., Xu, C., & Liang, D. (2018). Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging. PloS one, 13(5), e0187470.
Uto, K., Seki, H., Saito, G., & Kosugi, Y. (2013). Characterization of rice paddies by a UAV-mounted miniature hyperspectral sensor system. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 851-860.
Duarte-Carvajalino, J. M., Silva-Arero, E. A., Góez-Vinasco, G. A., Torres-Delgado, L. M., Ocampo-Paez, O. D., & Castaño-Marín, A. M. (2021). Estimation of Water Stress in Potato Plants Using Hyperspectral Imagery and Machine Learning Algorithms. Horticulturae, 7(7), 176.
Zhang, L., Zhang, H., Niu, Y., & Han, W. (2019). Mapping maize water stress based on UAV multispectral remote sensing. Remote Sensing, 11(6), 605.
Su, J., Liu, C., Coombes, M., Hu, X., Wang, C., Xu, X., ... & Chen, W. H. (2018). Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery. Computers and electronics in agriculture, 155, 157-166.
Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A review on UAV-based applications for precision agriculture. Information, 10(11), 349.
Goldbergs, G., Maier, S. W., Levick, S. R., & Edwards, A. (2018). Efficiency of individual tree detection approaches based on light-weight and low-cost UAS imagery in Australian Savannas. Remote Sensing, 10(2), 161.
Medina, S., Vicente, R., Amador, A., & Araus, J. L. (2016). Interactive effects of elevated [CO2] and water stress on physiological traits and gene expression during vegetative growth in four durum wheat genotypes. Frontiers in plant science, 7, 1738.
Toutin, T. (2002). Three-dimensional topographic mapping with ASTER stereo data in rugged topography. IEEE Transactions on geoscience and remote sensing, 40(10), 2241-2247.
Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., & Gabbianelli, G. (2013). Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote sensing, 5(12), 6880-6898.
Zhang, Y., Teng, P., Shimizu, Y., Hosoi, F., & Omasa, K. (2016). Estimating 3D leaf and stem shape of nursery paprika plants by a novel multi-camera photography system. Sensors, 16(6), 874.
Saponaro, M., Agapiou, A., Hadjimitsis, D. G., & Tarantino, E. (2021). Influence of Spatial Resolution for Vegetation Indices’ Extraction Using Visible Bands from Unmanned Aerial Vehicles’ Orthomosaics Datasets. Remote Sensing, 13(16), 3238.
Kaklauskas, A. (2015). Intelligent decision support systems. In Biometric and intelligent decision making support (pp. 31-85). Springer, Cham.
Kalkhan, M. A. (2011). Spatial statistics: geospatial information modeling and thematic mapping. CRC press.
Haghighattalab, A., Pérez, L. G., Mondal, S., Singh, D., Schinstock, D., Rutkoski, J., ... & Poland, J. (2016). Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods, 12(1), 1-15.
Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., & Ghosh, S. S. (2011). Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in neuroinformatics, 5, 13.
Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., ... & Nerini, F. F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature communications, 11(1), 1-10.
Kuru, K. (2021). Planning the Future of Smart Cities With Swarms of Fully Autonomous Unmanned Aerial Vehicles Using a Novel Framework. IEEE Access, 9, 6571-6595.
Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied geomatics, 6(1), 1-15.
Refbacks
- There are currently no refbacks.
------------------------------------------------------------------------------------------------------------------------
The ADBU Journal of Engineering Technology (AJET)" ISSN:2348-7305
This journal is published under the terms of the Creative Commons Attribution (CC-BY) (http://creativecommons.org/licenses/)