Pixel Count Based Yield Estimation Model, to Reduce Input feature required in Machine Learning System for Major Agricultural Crop
Abstract
Full Text:
PDFReferences
Myneni, Ranga B., et al. "The interpretation of spectral vegetation indexes." IEEE Transactions on Geoscience and Remote Sensing 33.2 (1995): 481-486. [2] Lhermitte, Stefaan, et al. "Hierarchical image segmentation based on similarity of NDVI time series." Remote Sensing of Environment 112.2 (2008): 506-521.
Rasmussen, Michael S. "Operational yield forecast using AVHRR NDVI data: reduction of environmental and inter-annual variability." International Journal of Remote Sensing 18.5 (1997): 1059-1077. [4] Quarmby, N. A., et al. "The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction." International Journal of Remote Sensing 14.2 (1993): 199-210. [5] Singh, R. A. N. D. H. I. R., et al. "Small area estimation of crop yield using remote sensing satellite data." International Journal of Remote Sensing 23.1 (2002): 49-56. [6] Labus, M. P., et al. "Wheat yield estimates using multi-temporal NDVI satellite imagery." International Journal of Remote Sensing 23.20 (2002): 4169-4180. [7] Yuan, Fei, and Marvin E. Bauer. "Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery." Remote Sensing of environment106.3 (2007): 375-386. [8] ller, Andreas C., and Sarah Guido. "Introduction to machine learning with Python." (2017).
Refbacks
- There are currently no refbacks.
------------------------------------------------------------------------------------------------------------------------
The ADBU Journal of Engineering Technology (AJET)" ISSN:2348-7305
This journal is published under the terms of the Creative Commons Attribution (CC-BY) (http://creativecommons.org/licenses/)