Design of self-cured geopolymer concrete using Taguchi approach

MAYANK GUPTA, N. H. Kulkarni

Abstract


Geopolymer concrete is the most suitable alternative to conventional concrete. It needs high-temperature curing to achieve better mechanical and durability properties, which is not possible on many Indian construction sites. Therefore, this research explores the effect of Variables like the quantity of aluminosilicate material (ASM), the ratio between Alkaline solution to the quantity of aluminosilicate material (AL/ASM), sodium silicate and sodium hydroxide ratio (SS/SH), and molarity of sodium hydroxide (SH) on the compressive strength and water absorption of Self-Cured Geopolymer Concrete (SCGC). The aforementioned properties have been optimized using the Taguchi approach and non-destructive testing (NDT) has also been performed on SCGC specimens. Along with the experimental work, a mathematical model was also developed using multiple regression analysis for predicting the compressive strength and water absorption of SCGC specimens. SCGC has been developed in an environment where temperature and humidity are not controlled. The experimental results inform that the specimen with ASM of 450 kg/m3, AL/ASM ratio of 0.45, SS/SH ratio of 1.5, and molarity of SH 12M provides maximum compressive strength and minimum water absorption. The pattern of the Signal-to-noise ratio (S/N) curve of the NDT is alike to that of the destructive tests (DT). The findings predicted by the polynomial regression equations are identical to the experimental results compared to the linear regression equation. It has also been found that SCGC of M25 grade can be developed without controlling temperature and humidity.   

Full Text:

PDF

References


W. Li, E. D. Shumuye, T. Shiying, Z. Wang, and K. Zerfu, “Eco-friendly fibre reinforced geopolymer concrete: A critical review on the microstructure and long-term durability properties,” Case Stud. Constr. Mater., vol. 16, no. November 2021, p. e00894, 2022, doi: 10.1016/j.cscm.2022.e00894.

I. Satpathy, J. K. Malik, N. Arora, S. Kapur, S. Saluja, and S. Bhattacharjya, “Material Consumption Patterns in India,” New Delhi, India, 2016.

L. K. Turner and F. G. Collins, “Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete,” Constr. Build. Mater., vol. 43, pp. 125–130, 2013, doi: https://doi.org/10.1016/j.conbuildmat.2013.01.023.

A. Mehta, R. Siddique, B. Pratap, S. Aggoun, G. Łagód, and D. Barnat-hunek, “Influence of various parameters on strength and absorption properties of fly ash based geopolymer concrete designed by Taguchi method,” Constr. Build. Mater., vol. 150, pp. 817–824, 2017, doi: http://dx.doi.org/10.1016/j.conbuildmat.2017.06.066.

J. Davidovits, “Chemistry of Geopolymeric Systems, Terminology,” in International Conference, France, 1999, pp. 9–40.

A. Mehta and R. Siddique, “An overview of geopolymers derived from industrial by-products,” Constr. Build. Mater., vol. 127, pp. 183–198, 2016, doi: 10.1016/j.conbuildmat.2016.09.136.

C. Ng, U. J. Alengaram, L. S. Wong, K. H. Mo, M. Z. Jumaat, and S. Ramesh, “A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete,” Constr. Build. Mater., vol. 186, pp. 550–576, 2018, doi: 10.1016/j.conbuildmat.2018.07.075.

M. Gupta and M. Kumar, “Effect of nano silica and coir fiber on compressive strength and abrasion resistance of Concrete,” Constr. Build. Mater., vol. 226, 2019, doi: 10.1016/j.conbuildmat.2019.07.232.

K. M. Klima, K. Schollbach, H. J. H. Brouwers, and Q. Yu, “Thermal and fire resistance of Class F fly ash based geopolymers – A review,” Constr. Build. Mater., vol. 323, no. October 2021, p. 126529, 2022, doi: 10.1016/j.conbuildmat.2022.126529.

M. A. A. Al-Dujaili, I. A. D. Al-Hydary, and Z. Z. Hassan, “Optimizing the Properties of Metakaolin-based (Na, K)-Geopolymer Using Taguchi Design Method,” Int. J. Eng. Trans. A Basics, vol. 33, no. 4, pp. 631–638, 2020, doi: 10.5829/IJE.2020.33.04A.14.

C. Jithendra and S. Elavenil, “Parametric Effects on Slump and Compressive Strength Properties of Geopolymer Concrete using Taguchi Method,” Int. J. Eng. Trans. C Asp., vol. 34, no. 3, pp. 629–635, 2021, doi: 10.5829/ije.2021.34.03c.06.

C. Gunasekara, D. W. Law, and S. Setunge, “Long term permeation properties of different fly ash geopolymer concretes,” Constr. Build. Mater. J., vol. 124, pp. 352–362, 2016, doi: 10.1016/j.conbuildmat.2016.07.121.

M. Olivia and H. Nikraz, “Properties of fly ash geopolymer concrete designed by Taguchi method,” Mater. Des., vol. 36, pp. 191–198, 2012, doi: 10.1016/j.matdes.2011.10.036.

M. Albitar, M. S. Mohamed Ali, and P. Visintin, “Experimental study on fly ash and lead smelter slag-based geopolymer concrete columns,” Constr. Build. Mater., vol. 141, pp. 104–112, 2017, doi: 10.1016/j.conbuildmat.2017.03.014.

O. A. Abdulkareem, A. M. Mustafa Al Bakri, H. Kamarudin, I. Khairul Nizar, and A. A. Saif, “Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete,” Constr. Build. Mater., vol. 50, pp. 377–387, 2014, doi: 10.1016/j.conbuildmat.2013.09.047.

C. D. Atiş, E. B. Görür, O. Karahan, C. Bilim, S. Ilkentapar, and E. Luga, “Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration,” Constr. Build. Mater., vol. 96, pp. 673–678, 2015, doi: 10.1016/j.conbuildmat.2015.08.089.

P. R. Vora and U. V. Dave, “Parametric studies on compressive strength of geopolymer concrete,” Procedia Eng., vol. 51, pp. 210–219, 2013, doi: 10.1016/j.proeng.2013.01.030.

S. Ahmad, A. A. Bahraq, A. A. Shaqraa, H. R. Khalid, A. H. Al-Gadhib, and M. Maslehuddin, “Effects of key factors on the compressive strength of metakaolin and limestone powder-based alkali-activated concrete mixtures: An experimental and statistical study,” Case Stud. Constr. Mater., vol. 16, no. November 2021, p. e00915, 2022, doi: 10.1016/j.cscm.2022.e00915.

S. R. Raj, P. G. Arulraj, N. Anand, K. Balamurali, and G. Gokul, “Influence of various design parameters on compressive strength of geopolymer concrete: A parametric study by taguchi method,” Int. J. Eng. Trans. B Appl., vol. 34, no. 10, pp. 2351–2359, 2021, doi: 10.5829/IJE.2021.34.10A.16.

F. U. A. Shaikh, “Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates,” Int. J. Sustain. Built Environ., vol. 5, no. 2, pp. 277–287, 2016, doi: https://doi.org/10.1016/j.ijsbe.2016.05.009.

P. Nath and P. K. Sarker, “Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition,” Constr. Build. Mater., vol. 66, pp. 163–171, 2014, doi: 10.1016/j.conbuildmat.2014.05.080.

Parveen, D. Singhal, M. T. Junaid, B. B. Jindal, and A. Mehta, “Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing,” Constr. Build. Mater., vol. 180, pp. 298–307, 2018, doi: 10.1016/j.conbuildmat.2018.05.286.

A. A. Aliabdo, A. E. M. Abd Elmoaty, and H. A. Salem, “Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance,” Constr. Build. Mater., vol. 123, pp. 581–593, 2016, doi: 10.1016/j.conbuildmat.2016.07.043.

T. Phoo-ngernkham, P. Chindaprasirt, V. Sata, S. Hanjitsuwan, and S. Hatanaka, “The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature,” Mater. Des., vol. 55, pp. 58–65, 2014, doi: 10.1016/j.matdes.2013.09.049.

M. Gupta and N. H. Kulkarni, “A Review on the Recent Development of Ambient Cured Geopolymer Composites,” in International Conference on Emerging Trends in Engineering (ICETE), 2020, pp. 179–188, doi: 10.1007/978-3-030-24314-2_24.

P. Nath and P. K. Sarker, “Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete,” vol. 130, pp. 22–31, 2017.

D. Adak, M. Sarkar, and S. Mandal, “Effect of nano-silica on strength and durability of fly ash based geopolymer mortar,” Constr. Build. Mater., vol. 70, pp. 453–459, 2014, doi: 10.1016/j.conbuildmat.2014.07.093.

M. Gupta and N. H. Kulkarni, “Investigation on the characteristics of self-cured geopolymer concrete using GBFS sand,” Innov. Infrastruct. Solut., vol. 7, no. 2, p. 139, 2022, doi: 10.1007/s41062-022-00748-5.

M. Gupta and N. H. Kulkarni, “Hurdles with self–cured Geopolymer Composites in Indian scenario,” in IOP Conference Series: Materials Science and Engineering, 2021, vol. 1116, no. 1, p. 012013, doi: 10.1088/1757-899x/1116/1/012013.

R. Ghosh, S. P. Sagar, A. Kumar, S. K. Gupta, and S. Kumar, “Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser,” J. Build. Eng., vol. 16, no. December 2017, pp. 39–44, 2018, doi: 10.1016/j.jobe.2017.12.009.

S. Naskar and A. K. Chakraborty, “Effect of nano materials in geopolymer concrete,” Perspect. Sci., vol. 8, pp. 273–275, 2016, doi: 10.1016/j.pisc.2016.04.049.

S. Saha and C. Rajasekaran, “Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag,” Constr. Build. Mater., vol. 146, pp. 615–620, 2017, doi: 10.1016/j.conbuildmat.2017.04.139.

A. Kusbiantoro, M. F. Nuruddin, N. Shafiq, and S. A. Qazi, “The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete,” vol. 36, no. 978, pp. 21–28, 2012, doi: http://dx.doi.org/10.1016/j.conbuildmat.2012.06.064.

M. N. S. Hadi, N. A. Farhan, and M. N. Sheikh, “Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method,” Constr. Build. Mater., vol. 140, pp. 424–431, 2017, doi: 10.1016/j.conbuildmat.2017.02.131.

S. Hanjitsuwan, S. Hunpratub, P. Thongbai, S. Maensiri, V. Sata, and P. Chindaprasirt, “Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste,” Cem. Concr. Compos., vol. 45, pp. 9–14, 2014, doi: 10.1016/j.cemconcomp.2013.09.012.

G. Görhan and G. Kürklü, “The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures,” Compos. Part B Eng., vol. 58, pp. 371–377, 2014, doi: 10.1016/j.compositesb.2013.10.082.

M. O. Yusuf, M. A. Megat Johari, Z. A. Ahmad, and M. Maslehuddin, “Influence of curing methods and concentration of NaOH on strength of the synthesized alkaline activated ground slag-ultrafine palm oil fuel ash mortar/concrete,” Mater. Des., vol. 66, pp. 541–548, 2014, doi: 10.1016/j.conbuildmat.2014.05.037.

A. A. Aliabdo, A. E. M. Abd Elmoaty, and H. A. Salem, “Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance,” Constr. Build. Mater., vol. 121, pp. 694–703, 2016, doi: 10.1016/j.conbuildmat.2016.07.043.

IS:3812 - 1, Specification for Pulverized Fuel Ash. New Delhi, India: Bureau of Indian Standards, 2003.

P. Pavithra, M. Srinivasula Reddy, P. Dinakar, B. Hanumantha Rao, B. K. Satpathy, and A. N. Mohanty, “A mix design procedure for geopolymer concrete with fly ash,” J. Clean. Prod., vol. 133, pp. 117–125, 2016, doi: 10.1016/j.jclepro.2016.05.041.

R. Anuradha, S. Venkataraman, R. Venkatasubramani, and B. Rangan, “Modified guidelines for geopolymer concrete mix design using Indian standard,” Asian J. Civ. Eng., vol. 13, pp. 353–364, Jan. 2012.

IS:10262, Concrete mix proportioning- guidelines. New Delhi, India: Bureau of Indian Standards, 2009.

IS:1199, Methods of sampling and analysis of concrete, Bureau of Indian Standards, New Delhi, India. New Delhi, India: Bureau of Indian Standards, 1959.

P. Nath and P. K. Sarker, “Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature,” Cem. Concr. Compos., vol. 55, pp. 205–214, 2015, doi: 10.1016/j.cemconcomp.2014.08.008.

IS:516, Method of Tests for Strength of Concrete. New Delhi, India: Bureau of Indian Standards, 1959.

ASTM C642, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. West Conshohocken, PA: ASTM International, 2013.

IS:13311 - 1, Method of Non-destructive testing of concrete, Part 1: Ultrasonic pulse velocity. New Delhi, India: Bureau of Indian Standards, 1992.

IS:13311 - 2, Method of non-destructive testing of concrete-methods of test, Part 2: Rebound hammer. New Delhi, India: Bureau of Indian Standards, 1992.

P. W. Ken, M. Ramli, and C. C. Ban, “An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products,” Constr. Build. Mater., vol. 77, pp. 370–395, 2015, doi: 10.1016/j.conbuildmat.2014.12.065.

Y. J. Patel and N. Shah, “Study on Workability and Hardened Properties of Self Compacted GEOPOLYMER Concrete Cured at Ambient Temperature,” Indian J. Sci. Technol., vol. 11(1), pp. 1–12, 2018, doi: 10.17485/ijst/2018/v11i1/117698.

S. U. Bashir, “Effect of Alkali Materials on Geo Polymer Concrete,” Int. J. Civ. Eng. Technol., vol. 6, no. 1, pp. 01–13, 2015.

K. Vijai, R. Kumutha, and B. G. Vishnuram, “Feasibility study on effective utilisation of fly ash from two thermal power stations on the development of geopolymer concrete,” I Control Pollut., vol. 28, no. 1, 1970.


Refbacks

  • There are currently no refbacks.


------------------------------------------------------------------------------------------------------------------------

The ADBU Journal of Engineering Technology (AJET)" ISSN:2348-7305

This journal is published under the terms of the Creative Commons Attribution (CC-BY) (http://creativecommons.org/licenses/)

Number of Visitors to this Journal: