A review on Day-Ahead Solar Energy Prediction
Abstract
Keywords
Full Text:
PDFReferences
B. Pillot, M. Muselli, P. Poggi and J. B. Dias, “Historical trends in global energy policy and renewable power system issues in Sub-Saharan Africa: The case of solar PV,” Energy Policy, Elsevier, vol. 127(C), pp. 113-124, 2019. doi: 10.1016/j.enpol.2018.11.049.
X. Zhao, J. Liu, D. Yu, and J. Chang, “One-day-ahead probabilistic wind speed forecast based on optimized numerical weather prediction data”, Energy Conversion and Management, vol. 164, pp. 560–569, May 2018, doi: 10.1016/j.enconman.2018.03.030.
Y. Hao and C. Tian, “A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting”, Applied Energy, vol. 238, pp. 368–383, Mar. 2019, doi: 10.1016/j.apenergy.2019.01.063.
S. Al-Yahyai, Y. Charabi, and A. Gastli, “Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment”, Renewable and Sustainable Energy Reviews, vol. 14, no. 9, pp. 3192–3198, Dec. 2010, doi: 10.1016/j.rser.2010.07.001.
J. Hu, H. Jiani, T. Jingwei and G. Miaolin, “Research and application of a hybrid model based on Meta learning strategy for wind power deterministic and probabilistic forecasting”, Energy conversion and management, vol. 173, pp. 197-209, 2018. doi” https://doi.org/10.1016/j.enconman.2018.07.052
Aasim, S. N. Singh and A. Mohapatra, “Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting”, Renewable Energy, vol. 136, pp. 758-768, 2019. doi: https://doi.org/10.1016/j.renene.2019.01.031
Y. Wang, H. Wang, D. Srinivasan, and Q. Hu, “Robust functional regression for wind speed forecasting based on Sparse Bayesian learning”, Renewable Energy, vol. 132, pp. 43–60, Mar. 2019, doi: 10.1016/j.renene.2018.07.083.
D. Yang, “On post-processing day-ahead NWP forecasts using Kalman filtering”, Solar Energy, vol. 182, pp. 179–181, Apr. 2019, doi: 10.1016/j.solener.2019.02.044.
W. Yun, W. Jianzhou and W Xiang, “A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: a case study of wind farms in northwest China,” Energy, vol. 91, pp. 556-572, 2015. doi: https://doi.org/10.1016/j.energy.2015.08.039
L. Wu, X. Gao, Y. Xiao, Y. Yang and X. Chen, “Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China,” Energy, vol. 157(C), pp. 327-335, 2018. doi: https://doi.org/10.1016/j.energy.2018.05.147
O. Ait Maatallah, A. Achuthan, K. Janoyan, and P. Marzocca, “Recursive wind speed forecasting based on Hammerstein Auto-Regressive model”, Applied Energy, vol. 145, pp. 191–197, May 2015, doi: 10.1016/j.apenergy.2015.02.032.
Y. Wang, Q. Hu, D. Meng, and P. Zhu, “Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model”, Applied Energy, vol. 208, pp. 1097–1112, Dec. 2017, doi: 10.1016/j.apenergy.2017.09.043.
G. Reikard, “Forcasting ocean wave energy: tests of time-series models”, Ocean Engineering, vol. 36, no. 5, pp. 348-356, 2019. doi: https://doi.org/10.1016/j.oceaneng.2009.01.003
R. C. Deo, X. Wen and F. Qi, “A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset”, Applied Energy, vol. 168, pp. 568–593, Apr. 2016, doi: 10.1016/j.apenergy.2016.01.130.
J. Wang, N. Zhang, and H. Lu, “A novel system based on neural networks with linear combination framework for wind speed forecasting”, Energy Conversion and Management, vol. 181, pp. 425–442, Feb. 2019, doi: 10.1016/j.enconman.2018.12.020.
M. Ali and R. Prasad, “Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition”, Renewable and in China”, Energy, vol. 157, pp. 327–335, Aug. 2018, doi: 10.1016/j.energy.2018.05.147.
A. Sharifian, M. J. Ghadi, S. Ghavidel, L. Li, and J. Zhang, “A new method based on Type-2 fuzzy neural network for accurate wind power forecasting under uncertain data”, Renewable Energy, vol. 120, pp. 220–230, May 2018, doi: 10.1016/j.renene.2017.12.023.
M. Han, L. Ding, X. Zhao, and W. Kang, “Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors”, Energy, vol. 171, pp. 69–76, Mar. 2019, doi: 10.1016/j.energy.2019.01.009.
W. Fei et al., “Generative adversarial networks and convolutional neural networks based weather classification model for day ahead short-term photovoltaic power forecasting”, Energy Conversion and Management, vol. 181, pp. 443-462, 2019. doi: https://doi.org/10.1016/j.enconman.2018.11.074
J. Oh and K. D. Suh, “Real-time forecasting of wave heights using EOF-wavelet-neural network hybrid model”, Ocean Engineering, vol. 150, pp. 48-59, 2018, doi: https://doi.org/10.1016/j.oceaneng.2017.12.044
A. Tascikaraogly and M. Uzunoglu. “A review of combined approaches for prediction of short-term wind speed and power”, Renewable and Sustainable Energy Reviews, vol. 34, no. C, pp. 243-254, 2014, doi: https://doi.org/10.1016/j.rser.2014.03.033
P. Jiang, H. Yang, and J. Heng, “A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting”, Applied Energy, vol. 235, pp. 786–801, Feb. 2019, doi: 10.1016/j.apenergy.2018.11.012.
Y. Li, H. Shi, F. Han, Z. Duan, and H. Liu, “Smart wind speed forecasting approach using various boosting algorithms, big multi-step forecasting strategy”, Renewable Energy, vol. 135, pp. 540–553, May 2019, doi: 10.1016/j.renene.2018.12.035.
M. Khodayar, J. Wang and M. Manthouri, "Interval Deep Generative Neural Network for Wind Speed Forecasting," in IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 3974-3989, July 2019, doi: 10.1109/TSG.2018.2847223.
H. Wang, G. Li, G. Wang, J. Peng, H. Jiang, and Y. Liu, “Deep learning based ensemble approach for probabilistic wind power forecasting”, Applied Energy, vol. 188, pp. 56–70, Feb. 2017, doi: 10.1016/j.apenergy.2016.11.111.
C. Y. Zhang, C. L. P. Chen, M. Gan and L. Chen, "Predictive Deep Boltzmann Machine for Multiperiod Wind Speed Forecasting," in IEEE Transactions on Sustainable Energy, vol. 6, no. 4, pp. 1416-1425, Oct. 2015, doi: 10.1109/TSTE.2015.2434387.
L. Li, Z. Yuan, and Y. Gao, “Maximization of energy absorption for a wave energy converter using the deep machine learning”, Energy, vol. 165, pp. 340–349, Dec. 2018, doi: 10.1016/j.energy.2018.09.093.
S. Sobri, S. Koohi-Kamali, and N. Abd. Rahim, “Solar photovoltaic generation forecasting methods: A review”, Energy Conversion and Management, vol. 156, pp. 459–497, Jan. 2018, doi: 10.1016/j.enconman.2017.11.019.
F. Barbieri, S. Rajakaruna and A. Ghosh, "Very short-term photovoltaic power forecasting with cloud modeling: A review," Renewable and Sustainable Energy Reviews, vol. 75(C), pp. 242-263, 2017. doi: https://doi.org/10.1016/j.rser.2016.10.068
C. Gallego-Castillo, A. Cuerva-Tejero and O. Lopez-Garcia, "A review on the recent history of wind power ramp forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pp. 1148-1157, 2015, doi: https://doi.org/10.1016/j.rser.2015.07.154
G. Notton et al., “Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting”, Renewable and Sustainable Energy Reviews, vol. 87, pp. 96–105, May 2018, doi: 10.1016/j.rser.2018.02.007.
P. A. E. M. Janssen and J. R. Bidlot, “Progress in Operational Wave Forecasting”, Procedia IUTAM, vol. 26, pp. 14–29, Jan. 2018, doi: 10.1016/j.piutam.2018.03.003.
S. Li, H. He and J. Li, "Big data driven lithium-ion battery modeling method based on SDAE-ELM algorithm and data pre-processing technology," Applied Energy, vol. 242(C), pp. 1259-1273, 2019, doi: https://doi.org/10.1016/j.apenergy.2019.03.154.
K. Wang, X. Qi, H. Liu and J. Song, “Deep belief network based k-means cluster approach for short-term wind power forecasting”, Energy, vol. 165, pp. 840–852, Dec. 2018, doi: 10.1016/j.energy.2018.09.118.
Y. Qin et al., “Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal," Applied Energy, vol. 236(C), pp 262-272, 2019, doi: https://doi.org/10.1016/j.apenergy.2018.11.063
C. Fan, J. Wang, W. Gang and S. Li, “Assessment of deep recurrent neural network-based strategies for short-term building energy predictions,” Applied Energy, vol. 236, pp. 700-710, 2019. doi: https://doi.org/10.1016/j.apenergy.2018.12.004
H. Liu, X. Mi, and Y. Li, “Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network”, Energy Conversion and Management, vol. 166, pp. 120–131, Jun. 2018, doi: 10.1016/j.enconman.2018.04.021.
Z. Chen and C. Jiang, “Building occupancy modeling using generative adversarial network,” Energy and Buildings, vol. 174, pp. 372‐379, 2018, doi: https://doi.org/10.1016/j.enbuild.2018.06.029
Y. Chen, Y. Wang, D. Kirschen, and B. Zhang, “Model-Free Renewable Scenario Generation Using Generative Adversarial Networks”, IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3265–3275, May 2018, doi: 10.1109/TPWRS.2018.2794541.
J. Wang, C. Wu, and T. Niu, “A Novel System for Wind Speed Forecasting Based on Multi-Objective Optimization and Echo State Network,” Sustainability, vol. 11, no. 2, p. 526, Jan. 2019, doi: 10.3390/su11020526.
H. S. Dhiman, D. Deb, Dipankar and J. M. Guerrero, “Hybrid machine intelligent SVR variants for wind forecasting and ramp events," Renewable and Sustainable Energy Reviews, vol. 108(C), pp. 369-379, 2019, doi: https://doi.org/10.1016/j.rser.2019.04.002
F. Ziel and R. Steinert, "Probabilistic mid- and long-term electricity price forecasting," Renewable and Sustainable Energy Reviews, vol. 94(C), pp. 251-266, 2018, doi: https://doi.org/10.1016/j.rser.2018.05.038
Z. C. Yang, “Modeling and forecasting monthly movement of annual average solar insolation based on the least-squares Fourier-model,” Energy Conversion and Management, vol. 81, pp. 201–210, 2014, doi: https://doi.org/10.1016/j.enconman.2014.02.033
J. Wang, W. Zhang, J. Wang, T. Han, and L. Kong, “A novel hybrid approach for wind speed prediction”, Information Sciences, vol. 273, pp. 304–318, Jul. 2014, doi: 10.1016/j.ins.2014.02.159.
J. Naik, P. K. Dash and S. Dhar, "A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based Multi-kernel robust ridge regression," Renewable Energy, vol. 136(C), pp. 701-731, 2019, doi: 10.1016/j.renene.2019.01.006.
Z. Qian, Y. Pei, H. Zareipour and N. Chen, “A review and discussion of decomposition-based hybrid models for wind energy forecasting applications”, Applied Energy, vol. 235, pp. 939-953, 2019, doi: https://doi.org/10.1016/j.apenergy.2018.10.080
M. Sun et al., “A two-step short-term probabilistic wind forecasting methodology based on predictive distribution optimization,” Applied Energy, vol. 238, pp. 1497-1505, 2019, doi: 10.1016/j.apenergy.2019.01.182
H. Bludszuweit, J. A. Dominguez-Navarro, and A. Llombart, “Statistical Analysis of Wind Power Forecast Error”, IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 983–991, Aug. 2008, doi: 10.1109/TPWRS.2008.922526.
A. Bracale et al., “A Bayesian Method for Short-Term Probabilistic Forecasting of Photovoltaic Generation in Smart Grid Operation and Control”, Energies, vol. 6, no. 2, pp. 733-747, 2013, doi: https://doi.org/10.3390/en6020733
P. Pinson. “Very Shorttem Probabilistic forecasting with generalized logit-normal distributions”, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol. 61, pp. 555-576, 2012, doi: https://doi.org/10.1111/j.1467-9876.2011.01026.x
M. Poncela, P. Poncela and J. R. Perán, "Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting," Applied Energy, vol. 108, pp. 349-362, 2013, doi: 10.1016/j.apenergy.2013.03.041.
A. Bracale, G. Carpinelli, and P. De Falco, “A Bayesian-based approach for the short-term forecasting of electrical loads in smart grids.: Part II: numerical applications”, in 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Jun. 2016, pp. 129–136, doi: 10.1109/SPEEDAM.2016.7526023.
B. Kim and D. Suh, “A Hybrid Spatio-Temporal Prediction Model for Solar Photovoltaic Generation Using Numerical Weather Data and Satellite Images,” Remote Sensing, vol. 12, no. 22, p. 3706, Nov. 2020, doi: 10.3390/rs12223706.
O. Şenkal, “Modeling of solar radiation using remote sensing and artificial neural network in Turkey”, Energy, vol. 35, no. 12, pp. 4795–4801, Dec. 2010, doi: 10.1016/j.energy.2010.09.009.
R. Chang, L. Bai, and C.-H. Hsu, “Solar power generation prediction based on deep Learning”, Sustainable Energy Technologies and Assessments, vol. 47, p. 101354, Oct. 2021, doi: 10.1016/j.seta.2021.101354.
H. Ferreira. “Prediction wind and solar generation from weather data using machine learning”, Medium, Apr 22, 2018. [Online]. Available: https://medium.com/hugo-ferreiras-blog/predicting-wind-and-solar-generation-from-weather-data-using-machine-learning-998d7db8415e. [Accessed: 16 Aug 2022].
A. Hammer, D. Heinemann, C. Hoyer, R. kuhlemann, E. Lorenz, R. Müller, H. Georg Beyer. “Solar energy assessment using remote sensing technologies”, Remote Sensing of Environment, vol. 86, no. 3, pp. 423-432, 2003, doi: https://doi.org/10.1016/S0034-4257(03)00083-X
A. Olaoye. “Prediction solar power output using machine learning techniques”, Towards Data Science, Medium, Jan 3, 2022. [Online] Available: https://towardsdatascience.com/predicting-solar-power-output-using-machine-learning-techniques-56e7959acb1f. [Accessed: 12 Aug 2022].
I. K. Bazionis and P. S. Georgilakis, “Review of Deterministic and Probabilistic Wind Power Forecasting: Models, Methods, and Future Research,” Electricity, vol. 2, no. 1, Mar. 2021, pp. 13-47. doi: https://doi.org/10.3390/electricity2010002.
Copyright (c) 2023
This work is licensed under a Creative Commons Attribution 4.0 International License.
Call for Paper for the upcoming issue
The journal welcomes publications of high-quality research papers, review papers, white papers, conference papers, etc. on theoretical developments and practical applications in the domain of Electrical and Electronics and its allied sciences.
Authors are solicited to contribute to the journal by submitting articles that illustrate original research works, short communications and review articles in the thrust areas of the journal as mentioned on the About page.
- The downloadable Template and the Online submission link are available on the PAPER SUBMISSION page.
ADBU Journal of Electrical and Electronics Engineering (AJEEE) - ISSN: 2582-0257 is an International peer-reviewed Open-Access Online journal in the English language that publishes scientific articles which contribute new novel experimentation and theoretical work in all areas of Electrical and Electronics Engineering and its applications. |
* The views, interpretations and opinions expressed in the articles are those of the author(s) and should not be considered to reflect the opinions of the Editorial Board of this journal- AJEEE.