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Abstract: Six different versions of nuclear Bass and Winther potentials viz., Bass 77, Bass 80, Ngô 80, CW 76, 

BW 91 and AW 95, are being applied to see the influence of static quadrupole and hexadecapole deformation of 

targets and its orientations with collision axis on the fusion cross section. The interaction barrier parameters 

(barrier height, position and its curvature) for the reactions induced by spherical projectiles, 
16

O, on the slightly 

deformed targets, 
58,62

Ni, have been estimated from the variations of total interaction potential with the inter-

nuclear separation; which is then used in Wong’s formula to determine the fusion cross section for the reactions. 

It is found that the nuclear potential considered here strongly depends on the value of the deformation 

parameters of the target and its orientation. In this work, the experimental fusion cross-section of the reactions 
16

O + 
58

Ni and 
16

O + 
62

Ni are investigated with these nuclear potentials. The fusion cross-sections obtained by 

Bass 80, Ngô 80, BW 91 and CW 76 potentials are found to be in better agreement with the experimental fusion 

cross-section than that of AW 95 and Bass 77 for the reaction 
16

O + 
58

Ni. On the other hand, for the reaction 
16

O 

+ 
62

Ni, Bass 77, Bass 80 and BW 91 potentials are found out to be in better agreement than AW 95, CW 76 and 

Ngô 80 in comparison to experimental data. 
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1. Introduction. 

 

Heavy ion fusion – fission nuclear reaction studies, especially around the Coulomb barrier, have been a topic of 

intense research during the past few decades [1, 2]. The fusion cross sections around barrier energies are seen to 

be influenced dramatically by the internal structure and the entrance channel parameters, namely, the mass 

asymmetry and the deformation of the interacting nuclei. Such entrance channel properties affect the probability 

of a compound nucleus system or a dinuclear system significantly. For compound nucleus system, the mass 

flows from the projectile to the target thereby leading to the formation of compound nucleus which may decay 

via fission or particle evaporation. For dinuclear system, the mass flows from the target to the projectile and will 

decay before equilibrating in all degrees of freedom, leading to quasifission. Several authors have studied such 

entrance channel effect and have proposed different mechanisms of entrance dynamics for different systems [3, 

4]. It has been shown both experimentally and theoretically that the fusion cross-section at near barrier energies 

of spherical, nearly spherical and well-deformed nuclei of either of the colliding partners in the ground state is 

strongly enhanced by deformation [5]. The quadrupole (β2) and the hexadecapole (β4) deformation and the 

orientation of deformation axis with the colliding axis affect the sub-barrier fusion reactions and hence the 

fusion barriers, thereby overall affecting the fusion cross-section [1, 6]. Such behaviour can be studied by using 

the knowledge of nucleus-nucleus interaction potentials which acts as an essential ingredient in these kinds of 

fusion-fission dynamics. Thus using an orientation dependent nuclear interaction potential, with parabolic 

approximation, these behaviours are studied here. 

 

Many such nuclear interaction potentials predict the fusion dynamics of a large number of reactions [7]. Among 

these, widely used phenomenological proximity potential [8] is reported here and is parameterized it within the 

proximity concept for wider acceptability [7]. With the passage of time, several emendations on original 

proximity potential [9] have augmented different versions of the same model which can be found in the 

literature [7].  
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In this paper, the fusion cross-sections induced by spherical nuclei, 
16

O, are investigated on slightly deformed 

and the semi magic target nuclei in the medium mass region, 
58

Ni and 
62

Ni, having low deformation parameters, 

within the theoretical approach, to determine the role of static deformed potentials at sub-barrier energies. The 

deformation parameters considered here for both the target nuclei are β2 = 0.093, β4 = - 0.008 [10]. Using six 

different versions of global nuclear proximity potentials, the interaction barrier parameters, viz., the interaction 

barrier heights, the interaction barrier radii and the interaction barrier curvature, (all being orientation (θ) 

dependent, where θ is the angle of the symmetric axis of a deformed nucleus with the collision axis) are 

determined for the two reactions; 
16

O + 
58

Ni [11] and 
16

O + 
62

Ni [11]. The fusion cross-sections, obtained after 

applying these interaction barrier parameters in the Wong’s formula for the nucleus – nucleus potential, are then 

compared with the experimental data to see how well the barriers were reproduced. 

 

2. The Formalism: 

 

2.1. Proximity potential: 

 

Following presents the brief description of the proximity potentials used here in the calculation of fusion barrier 

parameters and hence fusion cross-sections. The details of the six versions of proximity potential used here are 

shown in Ref. [7]. The proximity potential is labelled so due to the fact that when the two nuclei approach each 

other within a distance of few fermi, then additional force acts due to the surface proximity. The proximity force 

theorem which states that, “the force between two gently curved surfaces in close proximity is proportional to 

the interaction potential per unit area between the two flat surfaces” forms the basis of the proximity potential. 

The nuclear part of the interaction potential is taken as the product of a factor depending on the mean curvature 

of the interaction surface and a universal function (which depends on the separation distance but is independent 

of colliding nuclei) [12]. 

 

2.1.1. Bass 77: 

 

The model Bass 77 [13,14] is based on the assumption of liquid-drop model [15]. Here change in the surface 

energy of two fragments due to their mutual separation is represented by exponential factor. By multiplying with 

geometrical arguments, the nuclear part of the interaction potential is written as given in equation (1). 

VN(r) = − 𝑅̅Φ(s) MeV,                                                                     (1) 

where (𝑅̅ =
𝑅1𝑅2

𝑅1+ 𝑅2
) and Φ (s = r – R1 – R2) are the reduced radius and the universal function respectively and r 

being the distance between the centres of the projectile and the target. In this model, the radii R1 and R2 of the 

interacting nuclei are given as 

Ri = 1.16Ai
1/3

 − 1.39Ai
−1/3

 fm, i = 1,2                                                         (2) 

where Ai is the mass number of the projectile and target.  

 

The universal function is given by the following expression (3) 

Φ(s) = [0.03 𝑒𝑥𝑝 (
𝑠

3.30
) +  0.0061 𝑒𝑥𝑝 (

𝑠

0.65
)]

−1

 MeVfm
 −1

                                     (3) 

Using the above form, the nuclear part of the interaction potential, VN(r), given by equation (1) can be 

calculated. 

 

2.1.2. Bass 80: 

 

The above potential (Bass 77) form was slightly modified by Bass [13] to new one as Bass 1980 (Bass 80) 

where the radii of the interacting nuclei are modified as following, 

Ri = Rsi (1 −
0.98

𝑅𝑠𝑖
2 ) i = 1, 2                                                                 (4) 

Rsi = 1.28Ai
1/3

 − 0.76 + 0.8Ai
−1/3

 fm, i = 1, 2                                                  (5) 

 

The universal function for this potential is given by the following expression (6) 

Φ(s) =[0.033 𝑒𝑥𝑝 (
𝑠

3.5
)  +  0.007 𝑒𝑥𝑝 (

𝑠

0.65
)]

−1

 MeVfm
−1

                                      (6) 

 

2.1.3. CW 76: 

 

Based on the semi-classical arguments and the recognition that optical-model analysis of elastic scattering 
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determines the real part of the interaction potential only in the vicinity of a characteristic distance [16–18], 

Christensen and Winther [19] derived the nucleus-nucleus interaction potential by analyzing the heavy-ion 

elastic scattering data. The nuclear part of the empirical potential due to Christensen and Winther is given by 

equation (7) 

VN(r) = −A𝑅̅Φ(s) MeV                                                                  (7) 

where A is an arbitrary constant, (𝑅̅ =
𝑅1𝑅2

𝑅1+ 𝑅2
) and Φ (s = r – R1 – R2) are reduced radius and universal function 

respectively and r is the distance between the centres of the projectile and the target. 

 

According to Christensen and Winther 1976 (referred as CW 76), the constant A = 50, 

Ri = 1.233Ai
1/3

 − 0.978Ai
−1/3

 fm                                                          (8) 

where Ai is the mass number of the projectile and the target and the universal function is given by equation (9), 

Φ(s) = 𝑒𝑥𝑝 (−
𝑠

0.63
)                                                                    (9) 

 

2.1.4. BW 91: 

 

BW 91 potential is a refined version of the above mentioned potential, CW 76, and was derived by Broglia and 

Winther [13] in the year 1991 by taking Woods-Saxon parameterization with subsidiary condition of being 

compatible with the value of the maximum nuclear force predicted by the proximity potential Prox 77 [8], 

 

In this case of BW 91 potential, the nuclear potential VN(r) remains the same as that of CW 76 which is given by 

the equation (7). Here the constant A is modified to ‘A = 16πγa’ where, the diffuseness parameter, a = 0.63 fm 

and the surface energy coefficient γ is given by 

γ = γ0 [1 − 𝑘𝑠 (
𝑁𝑃−𝑍𝑃

𝐴𝑃
) (

𝑁𝑇−𝑍𝑇

𝐴𝑇
)]                                                          (10) 

with γ0 =0.95 MeV/fm
2
 and ks =1.8. The subscripts P and T refer to the projectile and target respectively. The 

universal function is written as equation (11) and the expression of the radii of the interacting nuclei is given by 

the expression (12) 

Φ(s) = [1 +  𝑒𝑥𝑝 (𝑠 −
0.29

0.63
)]

−1

                                                          (11) 

Ri = 1.233Ai
1/3

 − 0.98Ai
−1/3

 fm                                                           (12) 

 

2.1.5. AW 95: 

 

The parameters a and Ri of the above potential, BW 91, were further refined by Winther to a modified form 

Aage Winther 1995 (referred as AW 95). These modified parameters are defined in equations (13) and (14) 

respectively. 

a = 

[
 
 
 
 

1

1.17(1+0.53(𝐴1

−1
3 +𝐴2

−1
3 ))

]
 
 
 
 

 fm                                                           (13) 

Ri = 1.20Ai
1/3

 − 0.09 fm                                                               (14) 

 

2.1.6. Ngô 80: 

 

In this model, calculations of the ion-ion potential are performed within the framework of energy-density 

formalism due to Bruckener et al., using a sudden approximation [20]. Ngô [21] parameterized the nucleus-

nucleus interaction potential in line with the proximity concept. The interaction potential is the product of the 

geometrical factor and a universal function. The nuclear part of the parameterized potential is written as [22] 

VN(r) = 𝑅Φ(s = r–R1–R2) MeV                                                          (15) 

where 𝑅 is the reduced radius [7]. The nuclear radius Ri reads as 

Ri = 
𝑁𝑅𝑛𝑖+𝑍𝑅𝑝𝑖

𝐴𝑖
 ,i = 1,2                                                                 (16) 

The equivalent sharp radius for protons and neutrons are given as 

Rpi = 𝑟0𝑝𝑖
𝐴𝑖

1 3⁄
; Rni =  𝑟0𝑛𝑖

𝐴𝑖
1 3⁄

                                                           17) 

with 𝑟𝑜𝑝𝑖
 = 1.128 fm and 𝑟𝑜𝑛𝑖

 = 1.1375 + 1.875 × 10
-4

Ai   fm 
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The universal function Φ(s = r–R1–R2) is written in Ref. [7]. This potential is commonly referred as Ngô 80 

 

2.2 Interaction potential: 

 

The total interaction potential is the sum of the centrifugal term, the long range Coulomb repulsive force and the 

short range nuclear attractive force which is written in equation (18). 

V(r) = VC(r) + VN(r) + 
ħ2𝑙(𝑙+1)

2𝜇𝑟2                                                          (18) 

where l is the angular momentum quantum number, and μ is the reduced mass of the system. l = 0 is considered 

in this case. The Coulomb potential VC(r) [12] can be approximated by the relation given in equation (19) 

VC(r) = {

𝑍𝑃𝑍𝑇𝑒2

2𝑟𝑐
(3 −

𝑟2

𝑟𝑐
2)  if r ≤ rc 

𝑍𝑃𝑍𝑇𝑒2

𝑟
 if r ≥ rc

                                                    (19) 

where ZP, ZT are the atomic numbers of the projectile and the target respectively. r is the internuclear separation. 

Here, the size of the projectile is assumed to be much smaller than the radius of the target, rc. The nuclear 

potential VN (r) is calculated by applying the potentials, viz., Bass 77, Bass 80, CW 76, BW 91, AW 95 and Ngô 

80. 

 

The fusion barrier heights and positions for the different potentials mentioned above can be determined by 

setting the following conditions (20) on the interaction potential determined by the above equation (18). 
𝑑𝑉(𝑟)

𝑑𝑟
|
𝑟=𝑅𝑏

=  0  and  
𝑑2𝑉(𝑟)

𝑑𝑟2 |
𝑟=𝑅𝑏

≤  0                                                    (20) 

Here, in this paper, a corrected form of the Coulomb barrier is necessary for the deformed target due to which 

Takigawa’s expression [23] is used, i.e., 

𝑉𝐶
1(𝑟) = ZPZTe

2
F

(0)
(r) + ZPZTe

2∑ {𝐹𝜆
(1)(𝑟)𝛽𝜆𝑌𝜆0(𝜃, 0)}𝜆=2,4  + ZPZTe

2
 𝐹𝜆=2

(2) (𝑟)
5𝛽2

2

7√𝜋
 𝑌20(𝜃, 0)          (21) 

The first term of this equation (21) is the bare Coulomb interaction, the second and third terms are the linear and 

the second-order Coulomb couplings respectively. β2 and β4 are respectively the quadrupole and the 

hexadecapole deformation parameters. The linear term is retained only upto the quadrupole and hexadecapole 

terms, whereas the second-order term is retained only upto the quadrupole term. The expression for the 

functional forms F
(0)

(r), Fλ
(1)

(r) and Fλ
(2)

(r) considered here are available in Ref. [12] only for r > RT + RP, and 

the system considered here follows this condition as referred in Ref. [23], where RP and RT are respectively the 

radii of the projectile and the target. The fusion cross-sections are calculated by incorporating the interaction 

barriers so obtained in the Wong model [24].  

 

2.3. Fusion cross-sections: 

 

The model derived by Wong [24] is used here to calculate the fusion cross-sections. The fusion cross-section 

was calculated by the ‘barrier penetration model’ under the parabolic approximation [1, 24]. In this formalism, 

the cross section for complete fusion is given by equation (22) 

𝜎𝑓
𝑙(𝐸, 𝜃) = 

𝜋(2𝑙+1)

𝑘2 [1 + 𝑒𝑥𝑝 (
2𝜋

ℏ𝜔(𝜃)
(𝑉𝐵(𝜃) − 𝐸𝐶.𝑀. +

𝑙(𝑙+1)ℏ2

2𝜋𝑅𝐵
2 (𝜃)

))]

−1

                           (22) 

where k is the wave number, EC.M. represents the energy in the centre of mass frame; VB(θ), RB(θ), and ħω are 

the barrier parameters (barrier heights, barrier radii and barrier curvature respectively) for the different 

orientations. Considering the value of l = 0, the fusion cross-sections at each angle reduces to 

 σf (E,θ) = ∑ 𝜎𝑓
𝑙(𝐸, 𝜃)𝑙  

= 
10𝑅𝐵

2 (𝜃)ℏ𝜔(𝜃)

2𝐸𝐶.𝑀.
𝑙𝑛 [1 + 𝑒𝑥𝑝 [

2𝜋(𝐸𝐶.𝑀.−𝑉𝐵(𝜃))

ℏ𝜔(𝜃)
]]                                                (23) 

Finally, the total cross-section (equation (24)) is given by integration over the angles 

σf(E) = ∫ 𝜎𝑓(𝐸, 𝜃)𝑑𝜃.
𝜋

2
0

                                                               (24) 
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Figure 1: The variation of interaction potential relative to the separation distance for 

16
O + 

58
Ni system due to 

six different proximity potential as mentioned accordingly in the plot assuming spherical and deformed target 

(including only Coulomb correction) at typical orientations as indicated. 
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Figure 2: The variation of interaction potential relative to the separation distance for 

16
O + 

62
Ni system due to 

six different proximity potential as mentioned accordingly in the plot assuming spherical and deformed target 

(including only Coulomb correction) at typical orientations as indicated. 

 

3. Results and discussions: 

 

The total interaction potential V (MeV) as a function of internuclear distance r (fm) for few orientations (say 0, 

45, 90 degrees) for the two reactions, i.e., 
16

O + 
58

Ni (Fig. 1) and 
16

O + 
62

Ni (Fig. 2) are obtained using the six 

proximity potentials, i.e., Bass 77, Bass 80, CW 76, BW 91, AW 95 and Ngô 80. In these figures, x- axis 

corresponds to the distance between the interacting nuclei and y-axis corresponds to the interaction potential. 

Due to the slightly deformed target, the corrected form of Coulomb and nuclear part of the total potential is 

applied here. The effective orientation dependent interaction potential is then calculated over all these plausible 

orientations from 0 – 90 degrees, the deformation being axially symmetric. Fig. 1 and Fig. 2 shows the curve for 

the 
16

O + 
58

Ni and
 16

O + 
62

Ni systems respectively due to all six proximity potentials. It can be seen in the figure 
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that there is a slight change in the total interaction potential. The shape of the curve is raised slightly for the 

potential due to deformation as is evident in the figures. It is observed from the curve that the target deformation 

produces the more repulsive potential at shorter distances. At distance below the barrier radius (RB) a potential 

pocket exists which is expected. For distances greater than RB the spherical and deformed cases reveal almost 

the same behaviour revealing the insensitiveness of the potential expression at larger distance. Hence the 

potential, whether due to deformed nuclei or spherical nuclei, shows almost the same behaviour at larger 

internuclear separation by nearly merging with each other.  However for the potentials CW 76 even at closer 

distances, lesser than RB, there is no change in behaviour because of deformed nuclei or spherical nuclei. This is 

mainly due to the exponential nature of the nuclear potential. As such, in this case, the change in nuclear 

potential overrides the change in Coulomb potential [12].  

 

Table 1: Barrier parameter for the two systems after applying Coulomb correction. 

Potentials 

16
O + 

58
Ni 

16
O + 

62
Ni 

90
0
 45

0
 0

0
 90

0
 45

0
 0

0
 

VB 

(MeV) 

RB 

(fm) 

VB 

(MeV) 

RB 

(fm) 

VB 

(MeV) 

RB 

(fm) 

VB 

(MeV) 

RB 

(fm) 

VB 

(MeV) 

RB 

(fm) 

VB 

(MeV) 

RB 

(fm) 

Bass 77 32.1 9.4 31.5 9.5 31.3 9.6 31.8 9.5 31.5 9.5 31.2 9.5 

Bass 80 31.8 9.1 32.4 9.1 31.3 9.6 31.7 9.5 31.4 9.5 31.1 9.5 

CW 76 30.6 9.4 31.6 9.5 30.8 9.6 31.6 9.6 31.3 9.7 30.9 9.7 

BW 91 31.8 9.3 31.6 9.6 31.3 9.5 31.9 9.5 31.5 9.5 31.2 9.6 

AW 95 30.8 9.7 30.4 9.8 30.3 9.8 30.9 9.9 30.5 9.9 30.2 9.9 

Ngô 80 33.4 9.3 33.1 9.4 32.5 9.3 33.4 9.1 33.1 9.1 32.7 9.1 

 
The interaction barrier parameters value are then obtained (as tabulated in table 1) after applying successive 

Coulomb corrections due to the quadrupole and hexadecapole term (linear-order) and the quadrupole term 

(second-order) at these orientations for the two reactions. The barrier parameters, so obtained, are then applied 

in Wong’s formula, to analytically calculate the fusion cross-sections for these systems and compared with the 

corresponding experimental cross-sections for 
16

O + 
58

Ni and 
16

O + 
62

Ni [11] systems as is shown in Fig. 3. Both 

the systems have shown some enhancement in the sub-barrier region compared to the barrier penetration model 

in one dimensional mode. This is attributed to the inelastic coupling of the interacting nuclei by N. Keelay et al. 

[11]. In this case, as the target nuclei are slightly deformed, the deformed potentials are used to study the sub-

barrier cross section of these reactions in view of deformation. For 
16

O + 
58

Ni, except AW 95 which 

overestimates the experimental data, rest of the potentials give better results at above barrier energies and in the 

sub-barrier region. But towards the deep sub-barrier regions, except AW 95, which overestimate the data to a 

great extent, all other potentials overestimate the data to a certain extent. Ngô 80 is nearest to the experimental 

data in the sub-barrier region. Even for 
16

O + 
62

Ni, except AW 95 which overestimates the experimental data 

throughout, rest of the potentials give better results at above barrier energies. But in the sub-barrier region, Bass 

77, Bass 80 and BW 91 appear to be closer to the experimental data although except AW 95 all the other 

potentials underestimate the data. Thus, overall, the fusion-cross section for the Bass 77, Bass 80 and BW91 are 

found to be better in reproducing the same compared to that of AW 95, CW 76 and Ngô 80 for the reaction 
16

O 

+ 
62

Ni and the fusion-cross section for the Bass 77, Bass 80, BW91 and Ngô 80 are found to be better in 

reproducing the same compared to that of AW 95 and CW 76 for the reaction 
16

O + 
58

Ni. These deviations of the 

fusion cross section obtained due to the nuclear proximity potential from that of the experimental results may be 

attributed to the fact that the coulomb potentials considered here are orientation dependent, but nuclear 

potentials considered here is spherical. Thus some modifications are required in the nuclear proximity 

potentials’ expression considered here in terms of orientation. 

 



Journal of Applied and Fundamental Sciences    
   

   
 

 

   
JAFS|ISSN 2395-5554 (Print)|ISSN 2395-5562 (Online)|Vol 5(2)|December 2019                                           56 

 
Figure 3: The fusion cross-sections of 

16
O+ 

58
Ni (top) and 

16
O+ 

62
Ni (bottom) with relative to centre of mass 

energy. The experimental data is obtained from Ref. [11]. 

 

4. Conclusion: 

 

The effects of target deformation and its orientation with the collision axis on fusion barriers of the reactions 
16

O 

+ 
58

Ni and 
16

O + 
62

Ni are seen by employing six versions of different proximity-based orientation dependent 

interaction potentials as the barrier parameters are orientation dependent. The fusion cross-sections so obtained 

due to Bass 77, Bass 80, BW91 and Ngô 80 potentials showed good agreement with the experimental data at 

both sub-barrier and above barrier energies; but overall, Bass 77, Bass 80 and BW91 potentials seems to be in 

stronger agreement. The deviation of fusion cross-sections from the experimental data may be due to the fact 

that both Coulomb and nuclear corrections are needed for all the proximity potentials. In this work, the total 

interaction potential is extracted by considering the Coulomb corrections for all the potentials. To see the 
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deformation effect on fusion cross-section around the barriers, more sophisticated experimental data are 

required. 
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