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Abstract: In the theoretical study of ion-molecule collisions accurate construction of adiabatic potential and non-

adiabatic coupling matrix elements plays central role and the accuracy of semi-classical methods (like eikonal 

method), quantum mechanical methods and simulation techniques like surface hopping dynamics solely depend 

on the accuracy of the calculated potentials and coupling matrix elements. In this paper we briefly describe 

various quantum chemical techniques adopted to construct the potential energy surface and coupling matrix 

elements with high accuracy. 
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1. Introduction:  

 

The charge transfer process from molecules by ion impact are of great importance in many fields, especially in 

studies relevant to the planetary atmospheres, the interstellar medium and controlled thermonuclear fusion 

plasma. In particular, many experimental and only few theoretical investigations are focused on collisions of 

He
2+

 ion with CO molecule [1-6], since He
2+

 ion is one of the major constituent of the solar wind and CO 

molecule is commonly found in the comet’s neutral atmosphere near the Sun. The interaction of the solar wind 

with the atmospheres of planets or comets play a crucial role in understanding the X-ray emission from these 

objects and the interface between the solar wind and their atmospheres. The X-ray emission from charge transfer 

also has the potential to provide information regarding the composition of the atmospheres and the solar wind. 

            

In the systematic study of the charge transfer process in collisions of ion with molecule, the adiabatic potential 

energy curves and corresponding coupling matrix elements are to be calculated with considerably high accuracy. 

Because of the wide variation in the electronic structure of the combined target-projectile system, highly 

correlated electronic wave functions are needed for the study of ion-molecule interaction. 

 

In this paper a brief summary of theoretical methods used in ion-molecule collisions is given which includes 

brief discussion on the Hartree-Fock (HF) method, the configuration interaction (CI) method , the self-consistent 

field (SCF) method and the multireference single- and double-excitation configuration interaction (MRDCI) 

method.  

 

2. Quantum chemical methods: 

 

The description of the electronic structure of atoms and molecules is one of the important applications of 

quantum chemistry. The first step is to solve the time-independent Schrödinger equation 

          Hψ(r; R) = Eψ(r; R)                                                                       (1) 

with E being the energy eigenvalue and the molecular Hamiltonian in atomic unit [7] is expressed as 

H = −
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                    (2) 

where, A and B refers to nuclei and i and j refers to electrons. The first and the second term in Eqn. (2) are the 

operators for kinetic energy of the nuclei and of the electrons, respectively. The third term is the potential 

energy of repulsion between the nuclei,  RAB being the internuclear distance between the nuclei A and B with 

atomic numbers ZA and ZB. The fourth term is the potential energy of the attractions between the electrons and 
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the nuclei, riA being the distance between the i
th

 electron and nucleus A. The last term is the potential energy of 

the repulsion between the electrons, rij being the distance between electrons i and j.  

 

In the Born-Oppenheimer approximation, the nuclei are considered to be at rest as they are much heavier than 

electrons, so the motion of the nuclei and that of the electrons are decoupled. Accordingly, the wave function for 

nuclear and electronic motion may be separated, and the electrons will move with respect to the Hamiltonian 

          Hel =  −
1

2
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− ∑ ∑
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rij
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                              (3) 

The Schrödinger equation for electronic motion links the wave function and the energy of the system in its 

ground or excited state. Using the wave function, all chemical properties can be calculated. The post Hartree-

Fock methods are the most developed methods for accurate determination of the many-electron electronic 

structures of small molecules, especially when the wave function of the system is required to be calculated in the 

ground state and also in electronically excited states.  

 

3. The Hartree-Fock (HF) method: 

 

The Schrödinger equation cannot be solved exactly for systems containing more than one electron. By 

introducing some assumptions, however, we can solve it approximately. The complication arises due to the 

electron-electron repulsion potential term. This term couples electrons together which otherwise try to avoid 

each other within the presence of the electron-nuclear attraction. The motion of electrons is therefore correlated. 

The electrons tend to be close to the nuclei and move far apart from eachother, with the result that they can be 

found most frequently in region near the nuclei. Introducing the one-electron operator fi and two-electron 

operator gij, in the Hamiltonian operator gives  

          Hel =  ∑ fi

i

+ ∑ ∑ gij

i>𝑗j

                                                                (4) 

where  

          fi =  −
1

2
 ∇i

2 − ∑
ZA

riA
A

 ;                     gij =
1

rij
                                                  (5) 

To overcome the problem of the electron-electron repulsion, it can be eliminated in an extreme approximation, 

resulting in 

          Hel ≈  ∑ fi

i

=  H0                                                                       (6) 

Although it leads to a poor wave function, the advantage is that the Schrödinger equation can be solved exactly, 

by reducing it to a set of separated one-electron equations, 

          H0Φ0 =  E0Φ0                                                                               (7) 

where Φ0 is known as the HF approximation to the exact wave function ψ and it is an antisymmetrized product 

(Slater determinant) of spin-orbitals, each spin-orbital being a product of a spatial orbital ϕi and a spin wave 

functions,  describing the spin of an electron (either up or down). The spatial orbital ϕi satisfies the equation 

          fi(ri)ϕi(ri) =  εiϕi(ri)                                                                          (8) 

where εi is the energy eigenvalue corresponding to the i
th

 electron. In Eqn. (7) the energy eigenvalue E0 is given 

as the sum of orbital energies 

          E0 =  ∑ εi

i

                                                                                   (9) 

This solution can be improved by considering that an electron is moving in the averaged field of all other 

electrons. By introducing an approximate electron-electron repulsion term as a one-electron operator u(rj) in the 

Hamiltonian 

          Hel =  ∑ F(rj)

j

+ ∑ ∑
1

rij

 –  ∑ u(rj

ji>𝑗i

)                                                        (10) 

where F(rj) = f(rj) +  u(rj) is the Fock operator. It also preserves the separability of the equations 

          F(ri)ϕi(ri) =  εiϕi(ri)                                                                         (11) 
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Since the Fock operator is Hermitian, the eigenfunctions ϕi(ri) are orthonormal, or in degenerate cases they can 

be chosen to be orthonormal. It is required to form a wave function from these orbitals that satisfies the Pauli’s 

exclusion principle and is properly antisymmetric. The energy of the system may be approximated as the first-

order perturbation energy. Considering the last two terms of Eqn. (10) as perturbation and expressing it as 

          V = ∑ ∑
1

rij

 – ∑ u(rj

ji>𝑗i

)                                                                       (12) 

the energy becomes 

         E =  E0 +  ⟨Φ0|V|Φ0⟩  ≡  ⟨Φ0|Hel|Φ0⟩                                                            (13) 

Minimizing the energy with respect to improving the choice of orbitals while maintaining their orthogonality 

yields a wave function Φ0. The set of one-electron eigenvalue Eqn. (7) is solved typically in an iterative way, 

until self-consistency in the solution is achieved. Employing the variational principle for the energy gives an 

upper bound to the exact solution, E ≥ Eexact. During the variational procedure, the best form of u(rj) is also 

obtained. 

 

4. The configuration interaction (CI) method: 

 

In the configuration interaction (CI) method, one needs an approximate solution of the electronic Schrödinger 

equation 

          Helψ(r; R) = Eψ(r; R)                                                                        (14) 

where ψ(r; R) can be expressed as a linear combination of Slater determinats built from a complete set of 

orbitals. This linear combination has infinite terms and its truncation is the foundation of the CI method. 

             

Since electrons also have spin, it is not enough to specify the spatial coordinates of an electron, its spin should 

also be specified. Therefore, each orbital is considered to be not only a spatial single-particle function ϕ but also 

a spin function, describing the spin of an electron α (spin-up) and β (spin-down). The orbitals ψ(r, ω) =
 ϕ(r)σ(ω)  are formed accordingly, where r is for position vector of an electron and ω is the coordinate in the 

spin-space, or we can combine the coordinates into x, hence ψ(r, ω) =  ψ(x). When the coordinates x of two 

electrons are exchanged, only the sign of the wave function changes 

         ψ(x1, x2, x3, … , xN) =  − ψ(x2, x1, x3, … , xN)                                                   (15) 

where x1, x2, x3, … , xN represents the space and spin variables of N electrons. Eqn. (15) also implies that 

          ψ(x1, x1, x3, … , xN) = 0                                                                       (16) 

This enforces the Pauli’s exclusion principle, which states that two identical fermions cannot be in the same 

quantum state simultaneously. In other words, the wave function ψ must be antisymmetric. For two or more 

electrons, it is not possible to find ψ as a simple product of space and spin functions with this property. One may 

form a wave function of spin orbitals φ that is properly antisymmetric as 

 ψ =
1

√N!
 |

φ1(x1)
φ1(x2)

⋮

φ2(x1) … φN(x1)

φ2(x2) … φN(x2)
⋮ ⋮ ⋮

φ1(xN) φ2(xN) … φN(xN)

| 

                                 ≡
1

√N!
 ∑ (−1)PP| φ1(x1) φ2(x2) … φN(xN)|P                                             (17) 

This is known as Slater determinant [8], where P is a permutation operator and the antisymmetrizer is  

          𝒜 =
1

√N!
 ∑(−1)P P

P

                                                                        (18) 

As Hel and 𝒜 commute, Slater determinants will satisfy Eqns. (7), (8), (9), and (11) for simple products of 

orbitals. In wave function Φ0, if one occupied orbital φi is replaced, which is occupied by the i
th

 electron by an 

unoccupied orbital φa(a > 𝑁), which is also eigenfunction of the Fock operator F, then another Slater 

determinant Φi
a is obtained for which 

          F(x1)φa(x1) =  εaφa(x1)                                                                   (19) 

          H0Φi
a =  Ei

aΦi
a                                                                             (20) 

where Ei
a = E0 + εa − εi, is the energy eigenvalue corresponding to Φi

a and εi is the energy eigenvalue 

corresponding to φi. If only one spin orbital differs, Φi
a is described as a single (S) excitation determinant with 

respect to  Φ0. If two spin orbitals differ it is a double (D) excitation determinant and so on. 
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Generally, the exact wave function cannot be represented by a single Slater determinant, as it is in the HF 

approximation. The method is formally a representation of the N-electron Schrödinger wave function on a fixed 

N-particle sector of Fock space 

          |ψ〉 =  ∑ ci

i

|Φi〉                                                                             (21) 

where {Φi} are a suitable complete set of N-electron functions (e.g. Slater determinants) and the ci are 

expansion coefficients. The N-electron basis functions {Φ} can form a complete N-body expansion set if they 

are constructed from a complete (and often orthonormal) single-particle basis set [9]. Such a wave function 

expansion is known as the full configuration interaction (full CI or FCI) wave function. It is the numerically 

exact solution of the electronic Schrödinger equation of a many-electron system within the approximation of a 

given finite single-particle basis set. This is usually the most accurate solution achieved, since the analytical 

solution is not known.  

 

The correlation effect that two electrons with parallel spin can never occupy the same position in space, called 

Fermi correlation, is already considered within the HF approximation. Distinct from this is the Coulomb 

repulsion between electrons with opposite spin, which is usually referred to as the Coulomb correlation. The 

energy adjustment to HF due to the Coulomb correlation, E
FCI

 −E
HF

 is called the correlation energy [10]. An 

approximate wave function and also energy to the exact solution can be achieved by a suitable truncation of the 

FCI expansion, where the energy includes a part of the total correlation energy. As a summary, the relationship 

between energies at various level of approximations to the exact solution is given as, E
HF

 > E
truncated CI

 > E
FCI

. 

 

The exact wave function has additional properties which are in most cases desirable conditions for the 

approximate wave function. The wave function is an eigenfunction of the spin operator S
2
 and SZ, and that it 

transforms like an irreducible representation of the molecular point group. A linear combination of Slater 

determinants fulfilling these conditions is called a ‘configuration’ [11]. The approximate wave functions 

obtained using the CI methods are linear combinations of configurations. 

 

To determine the coefficients of the CI expansion the variational method is used [7], in this method, the 

coefficients are needed that minimize the energy expectation value with respect to the coefficients ci   

          E =
⟨ψ|Hel|ψ⟩

⟨ψ|ψ⟩
                                                                                 (22) 

The minimum condition δE = 0 leads to the ‘secular’ equation 

          ℋc = ScE                                                                                     (23) 

where ℋ and S are the Hamiltonian and overlap matrices, respectively, whose elements are given by 

           ℋij =  ⟨Φi|Hel|Φj⟩;                       Sij =  ⟨Φi|Φj⟩                                                 (24) 

Solving the secular equation (23) gives N values for the energy and N vectors c which, introduced in Eqn. (21), 

define N approximate molecular wave functions. Choosing the basis set of configurations Φi such that it 

becomes complete when N → ∞ and such that convergance of E is ensured. The ‘Hylleraas-Undheim-

McDonald theorem’ [12, 13] states that the k
th

 lowest eigenvalue of Eqn. (23) is a rigorous upper bound to the 

k
th

 lowest exact energy, as 

          ℋij =  ⟨Φi|Hel|Φj⟩ = Sij =  ⟨Φi|Φj⟩ = 0                                                       (25) 

where Φi and Φj have different symmetry, it is useful to employ a ‘symmetry adapted’ basis set such that the 

secular equation (23) is block diagonal, and can be solved for each block separately. The common procedure is 

to choose an appropriate (finite) atomic basis set, form linear combinations of Slater determinants which 

correspond to a given eigenvalue of S
2
 and SZ and transform like a given irreducible representation of the 

molecular point group, and introduce them in Eqn. (23). 

 

5. The self-consistent field (SCF) method: 

 

In the self-consistent field (SCF) method, a single configuration approach is used and the variational method is 

applied to determine the orbitals, which defines this configuration [14]. Considering the closed-shell 

configuration, in which all orbitals are doubly occupied and this configuration has the form 

  ψ =  𝒜|φ1αφ1β … φN/2 αφN/2β|                                                        (26) 

which is called the restricted Hartree-Fock (RHF) method. In Eqn. (26) α and β are spin wave functions, with 

spin quantum numbers ms = +1/2 and -1/2, respectively. In the variational method, for small variation δφi the 
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required condition is, δ[⟨ψ|Hel|ψ⟩] = 0 with the restriction, ⟨φi|φj⟩ = δij. Usually, the orbitals φi are expressed 

as a linear combination of a set of n (n > N) basis orbitals, {χs}  

          | φi〉 =  ∑ dsi| χs〉

n

s

                                                                          (27) 

Applying the variational method yields a set of equations with the form of secular equation for the coefficients 

dsi, which defines the canonical orbitals {φi} [15] 

          Fdi = SdiEi                                                                                  (28) 

where di is a column vector dsi,  S is the overlap matrix in the {χs} basis and F is the matrix of the Fock operator 

given by 

          F =   ⟨χs|Hcore|χt⟩  +  ∑ ∑ dji

n

j,k

N
2

i

dki  [2 ⟨χsχj|
1

r12

|χtχk⟩ − ⟨χsχj|
1

r12

|χkχt⟩]                       (29) 

  
where Hcore is the kinetic and nuclear attraction operator in the basis {Φi}. The energy eigenvalue Ei in Eqn. 

(28) is the energy of the electron described by the orbital φi in the average field created by the nuclei and the 

remainder (N-1) electrons, which occupy the orbitals that define the configuration (26). 

 

For open-shell configurations, the unrestricted Hartree-Fock (UHF) method is usually used, where a treatment 

similar to that of Eqns. (27), (28) and (29) is applied, but the restriction of the same orbital part for two spin-

orbitals of Eqn. (26) is removed. Therefore, a configuration of the following form is used 

          ψ =  𝒜|φ1α … φmαφm+1β … φNβ|                                                        (30) 
 

6. The MRDCI method: 

 

In the HF approximation, each electron is considered moving in the static electric field of other electrons, hence 

the correlated motion of electrons (Coulomb correlation) is ignored. The dynamical character of the interactions 

between electrons may be considered by using CI method. In such sense, electron correlation may be called 

‘dynamical correlation’, which is calculated exactly by using FCI method, or it may be calculated approximately 

by using truncated CI expansions. Some care is required when the CI expansion is truncated e.g. biradicals or 

nearly degenerate electronically excited states cannot be correctly described by a truncated single configuration 

CI wave function.  

 

Two or more Slater determinants in the FCI space may have the same CI expansion coefficients, or coefficients 

of similar magnitude, due to the (nearly) degenerate molecular orbitals. All of such determinants must be 

included in the wave function, and treated equally. The electron correlation described by a CI wave function of 

this kind of determinants is known as ‘non-dynamical correlation’. To describe dynamical electron correlation 

properly in these cases, excitations must be generated ‘symmetrically’ with respect to either of the equally 

important determinants [16].  

 

In FCI calculation the computational time to solve the many-body Schrödinger equation increases rapidly with 

the number of electrons correlated and orbitals included. Many techniques have been developed in quantum 

chemistry to truncate the FCI expansion with an acceptable loss of accuracy. |ψFCI〉 is often written by using 

some reference configuration function |Φ0〉, and by collecting the many-electron configuration functions based 

upon their excitation levels relative to |Φ0〉 (singles (S), doubles (D), triples (T), quadruples (Q), and so on), as  

   |ψFCI〉 = c0|Φ0〉 + ∑ ci
a

i,a

|Φi
a〉 + ∑ cij

ab|Φij
ab〉

i<𝑗
a<𝑏

+ ∑ cijk
abc

i<𝑗<𝑘
a<𝑏<𝑐

|Φijk
abc〉+..                             (31) 

Inclusion of only the single excitations results in a configuration interaction with singles (CIS) method, which is 

probably the simplest way to obtain approximations for the excited state energies. Although CIS can provide a 

description of excited states, it cannot improve the quality of the ground state wave function due to fact that 

⟨Φ0|Hel|Φi
a⟩ = 0 if the orbitals have been optimized within the HF approach for the ground state wave function. 

Truncating the expansion (31) by keeping only the single and double excited Φ functions leading to the CISD 

method 

          |ψCISD〉 = c0|Φ0〉 + ∑ ci
a

i,a

|Φi
a〉 + ∑ cij

ab|Φij
ab〉

i<𝑗
a<𝑏

                                                 (32) 
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In a multireference (MR) wave function, also known as multiconfiguration (MC) wave function, only the 

reference configurations are included in the wave function expansion [16], as 

         |ψMR〉 = |Φ′〉 + |Φ′′〉 + |Φ′′′〉 + ⋯                                                            (33) 

which allows us to describe both the spin and spatial symmetry of a system properly. Typically, the dynamical 

electron correlation effect can be considered by all single and double excitations with respect to |ψMR〉 by 

combining Eqns. (32) and (33) to construct a multireference configuration interaction wave function with single- 

and double-excitation (MRDCI) as 

          |ψMRDCI〉 = |ψCISD
′ 〉 + |ψCISD

′′ 〉 + |ψCISD
′′′ 〉 + ⋯                                                (34) 

In considering the possibility of shortening the CI expansion, it is reasonable to discard ‘unimportant’ 

configurations from the CI expansion. Configuration selection driven methods, are also called individually 

selecting CI methods, which are the most appropriate for this purpose. They exploit the fact that the CI 

Hamiltonian matrix is sparse, only relatively few configurations contributing significantly to the energy or the 

wave function [17]. 

 

In the case of MRDCI, reference configurations can be an arbitrary selection of configurations, commonly 

selected by their dominance in a CI wave function. This approach has been extensively used in the MRDCI 

program package [18-25]. In the MRDCI method, the whole MRDCI space is scanned and only those 

configurations that are found to be important are included in the primary CI expansion. The influence of all 

other configurations of the MRDCI space on the total energy is obtained by perturbation theory. The use of CI 

spaces for secular equations which consists of all singly and doubly excited configurations relative to a series of 

the most important terms in the expansions of desired electronic states [19], fulfills the requirement of providing 

linear spaces which gives an accurate description of one or more specific eigenfunctions of the Schrödinger 

equation, and thus to allow for variationally optimized wave functions which are close to the full CI level of 

accuracy in a suitably flexible atomic orbital (AO) basis. Moreover, the deviations from the full CI limit are 

corrected using analog to the Davidson-Langhoff correction [26, 27] namely, (1 − ∑ 𝑐𝑝
2

𝑝 )(EMRDCI − Eref), 

where EMRDCI is the total energy, Eref is the corresponding energy obtained from the secular equation involving 

only the reference configurations and 𝑐𝑝is the coefficient of the reference configuration in the CI eigenvector.  

 

7. Summary: 

 

In this paper we have briefly outlined various quantum chemical techniques employed to study the ion-molecule 

collisions.  As in case of ion-molecule collisions there is a wide variation in the electronic structure of the 

combined target-projectile system, highly correlated electronic wave functions are needed, and hence the 

multireference single- and double-excitation configuration interaction (MRDCI) approach is preferred over 

other computationally expensive  techniques.  
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