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Abstract: Recently, Bernard L.S. Lin has studied various arithmetic properties of the function ppg(n), the number
of overpartition pairs of n into odd parts. In particular, he has obtained a number of Ramanujan-type congruences
modulo 3 and modulo powers of 2. In this paper, we give proof of some of these congruences and find some other
interesting congruences by employing elementary generating function dissection techniques.
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1. Introduction:

An overpartition of a positive integer n is a non increasing sequence of positive integers whose sum is n in which
first occurrence of a number may be overlined. Let p(n) denote the number of overpartitions of n and Pg(n)
denote the number of overpartitions of n in which only odd parts are used. For example, the overpartitions of 3
are

3, 3, 2+1, 241, 2+1, 2+1, 14+14+1, 1+1+1

Thus, from this example, 5(3) = 8 and pg(3) = 4.

The function p(n) has been considered recently by number of mathematicians including Corteel and Lovejoy [7],
Hirschhorn and Sellers [8, 9], Mahlburg [14] and Kim [11]. In [8] and [14], several Ramanujan-like congruences
modulo small powers of 2 are proved for p(n). In [10], Hirschhorn and Sellers found several interesting results
for py(n) including Ramanujan-type congruences modulo powers of 2.

Recently, arithmetic properties of overpartition pairs pp(n) have been considered by Bringmann and Lovejoy [5],
Chen and Lin [6] and Kim [12]. In [10] Hirschhorn and Sellers studied the arithmetic properties of overpartitions
using only odd parts. More recently, Lin [13] has investigated various arithmetic properties of overpartition pairs
into odd parts. He has obtained a number of Ramanujan type congruences modulo 3 and modulo powers of 2. An
overpartition pairs into odd parts is a pair of overpartitions (A, z) such that the parts of both overpartitions A and
 are restricted to be odd integers. Note that either A or 1 may be an overpartition of zero. Let pp,(n) denote the
number of overpartition pairs of 7 into odd parts. Then the generating function for pp,(n) is

5 o -
n=0

44 Jeo 1
493 (g% )% o

where, here and the sequel, for |¢| < 1 and positive integers n, we use the standard notation

(a;9)0 : =1, (a;q)n:= 1:[(1 — aqk)7 and  (a;¢)oo = H(l —aq").
k=0 n=0

We list our main results in the following six theorems.
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Theorem 1.1 [13, Theorem] We have

nf%ppo(Qn +1)¢" = 4%. (3)
Theorem 1.2. We have
3 o = o @
imo(m +1)g" = 4% 5)
nz;)ppo (4n + 2)q" 8(?(173)32, 6)
;ppo(éln +3)g" = 167 q()q’;)qég )5 7

Lin [13] has proved some of the identities given in Theorem 1.1 and Theorem 1.2.

Theorem 1.3. We have

;m0(8n+4)q”80x{m+16 (4% q()%q()q AWES } )
§m0(8n+6)q" =32 x {3(61‘1()‘126(2)61) 116 4 q()q;q()qgo (ks } )
§W0(8n+7)qn a0 {5(%%3)39(? qC])) © 0 (08 (%q,Z)zo T (a% )%
+160 (?q,g)ig(éq,qq)zo } 1o
Theorem 1.4. We have
3 R T e T s
249642 (¢*4%)2 (?q,g)ég 5 (@%:4%)3 4 1408¢° (4% %) (%q,g);,g So(@%4%) 5 }
(11)
2@0(12n+ 10)q" =48 {13(?61 2)24(;‘1 qq)io i ((Zq Z)%é(;quq))
T T I v o S

From the above identities, we easily deduce the following congruences.
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Theorem 1.5. We have

PPo(2n 4+ 1) = 0 (mod 4),
PP (4n) = 0 (mod 4),
Po(4n + 1) = 0 (mod 4),
DPPo(4n + 2) = 0 (mod 8),
PPo(4n + 3) = 0 (mod 16),
PP (8n + 4) = 0 (mod 80),
DPo(8n + 6) = 0 (mod 32),
PPo(8n + 7) = 0 (mod 32),
PPo(12n 4+ 6) = 0 (mod 24),
DPo(12n 4 10) = 0 (mod 48).

13)

PPo(8n 4 3) = 0 (mod 2%), (14)
PPo(8n + 5) = 0 (mod 2%), (15)
PPo(8n + 6) = 0 (mod 2°), (16)
PPo(8n +7) = 0 (mod 2°), 17)
PPy (161 + 6) = 0 (mod 2°), (18)
PP (161 + 8) = 0 (mod 2%), (19)
PPo(16n + 10) = 0 (mod 2°), (20)
PP (16n + 12) = 0 (mod 2%), (21)
PPo(16n + 14) = 0 (mod 2°), (22)
DPy(32n + 20) = 0 (mod 320) (23)
PPo(32n + 28) = 0 (mod 320), (24)
PDo(48n 4 2) = 0 (mod 2%), (25)
PDo(48n + 10) = 0 (mod 2°), (26)
PDo(48n 4 18) = 0 (mod 2°), (27)
PPo(48n + 26) = 0 (mod 2°), (28)
PDo(48n + 34) = 0 (mod 2°), (29)
PDo(48n 4 42) = 0 (mod 2°). (30)
2. Some lemmas:
In order to prove the above identities and congruences we first give some lemmas.
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Lemma 2.1. We have

I (a5 ¢%)2, (q% a2 (0% 4")%
7 = 5 7 T2¢ , (31)
(05 (@%4%)2.(q'%5¢'0) (4%4%)2 (6% ¢®)
1 (gq)“‘ (0% 42 (6% ¢%)ne
= 4 , (32)
(Ga)h  (a%¢) (e q) (¢3¢
1 (% a H2e (a* 4" 2 (04 0Y)n (0% )5
— + 8¢ S (' : (33)
@Ga)s (4¢3 (g% q 8)°. (% ¢2)% (4% ¢2)%
I (¢ q) (tf*;q“)iéL o (g5 M2
.16 9116 164 96q 5. 2,48
(G0)° (4242 (¢% ¢%) (4% %) 2 (4% )5, (q,q)oo
(@*aM 2 (a5 ), (0% qM)5 (a5 %)L
+ 256¢° @) + 256¢* T (34)
1 (q*; q4)42 (q*;¢*)2 (0% q*) (a5 %)%
(g;9)2 - (4% 02)2(q% %) 2 +12q(q2;q2)38(q8;q8)4 a8 (g% ¢2)2
(0% q*)0 (a5 ¢%)L2
+64¢3 o) . (35)
Proof. Adding identities (v) and (vi) of [1, Entry 25, p. 40], we have
o(q) = o(q*) + 2q9*(¢%). (36)
©*(q) = ¢*(¢°) + 4qv° (). (37)
0 (q) = ¢*(¢°) + 8¢ (¢*)¥*(¢") + 16¢*¥ (¢*). (38)
where
— 2 (4% ¢%)3,
= f(q,q) = = (— S A i R 39
o(q) = f(g,9) kzz_ooq (=4 0°)2 (0% 0%) oo = Ga gt 0L (39)
and
k(k—‘rl)/Q ) _ (q27q2)g0 40
g = Zq (qu )oo (9 “0)
Now, employing (39) and (40) in (36), (54), (38), we readily arrive at (31), (32) and (33).
Again replacing ¢ by —q in (39), we have
N2
o(—q) = quzqz];‘; @1)
After Ramanujan, we also define
X(=9) = (4:4%)oo (égigl) (42)
Lemma 2.2. We have
3 (4% ¢%) o (4% ¢°)%, 9. 9\3 2 (6% 6°)°(0"%4"8)0,
1) a0 = -3 107 ) oo T4 . 43
(6005 = (0 (55 qmo)n, 2 e T4 608 o) )
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Lemma 2.3. We have

2 3 B
(@50 _ (@%10")(@"%:¢")5 | (4%0°)5 (0% 0°) o (0% %)

(@ @oe (g% 63)2 (4% %)%, (0% ¢%) oo (0151 ¢18) %,
Lo (4% 4%) 00 (0" 0"%) 0 (6°% ¢%) o )
(@3 632,
Proof. From [2], we have
c(q) V2 (¢%)
=1+ (45)
c(q*) q¥?(q®)
Next, we recall from [4] that
) 3. 3\3
L m2+mn+n2+mtn 1/3 (q 3 q )oo
c(q) := q =3q /== (46)
@ W;w (4 @)oo
Employing (46) in (45), we find that
(@519 _ (¢%a)% {1+ ¥ (q?) } 47
(45 9)o (q3;<13)3 q¥?(q%)
Next, replacing ¢ by ¢ in (56), we have
2/ 18 18 18
¢ (—¢") 29(=q%)v(q™®)
?(¢? :7+Q¢ +2¢ LA L (48)
(@) x?(—¢°) @)+ x(—4%)

Using (48) in (47), we obtain

(050 (a"%5¢)5 { 1 (w?(—qw) 4,218 Qso(—qw)w(qw))}

G C@er e Uece TVt e g
(4'%¢"2)2, {1+ 3¢2(q18)}+ (qm;q”)io{ ©?(—q'®) 5 w(qlg)w(qlg)}
AR L S - )

= +
(@) TR () @) L@ (=) " P(®)x(—¢0)
(49)
Employing (40), (41) and (42) in (49), we find that
(q4; q4)oo (q12; q12)3 { 3¢2(q18) } (q12; q12)oo(q18; q18)4
(G0 1 (63 ¢%)°. () " (0% %) 2 (436 ¢%6) %,
18. 18 36. 36 6. .6
+2g? (%02 ¢ 3)00((] 14°)oo 50)

(6%

Now, multiplying both sides of (47) by 12(q®) /4?(¢?), replacing q by ¢, and then employing (40), we deduce

that
2(0")  (¢%¢%)a (e’ a")a (6% %)
1+¢° = (51)
U@ (036%) 00 (055 019) 2 (0121 ¢12)2,
Employing (51) in (50), we arrive at (50) to finish the proof.
Now we state a lemma.
Lemma 2.4. We have
¥(q) = f(¢*,¢°) + qv(d”), (52)
2 90(*‘]3)
) = ) 53
fla,q%) Y (53)
¢*(a) = ¥*(¢°) + 4qv°(a"). (54)
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Proof. See [1, p. 49, Corollary(ii) and [1, p. 350, Eq. (2.3)] for the proofs of (52) and (53), respectively. Adding
identities (v) and (vi) of [1, Entry 25, p. 40 ], we can easily derive (54).

Lemma 2.5. We have

6 10 16 9 13 8 10
(6% (@%@ 6 (6% %) (@5 4”) s 01,2 (0% 4°%) oo (0% 0°) oo

(@)% (4% ¢%) e (055 493 (4% ¢%) o (055 48); (4% ¢%) oo (4'%; 492
7 7 6 4 4
3 (6%6°) 5 (4% 0°) 50 (4"%: 4"%) oo 4 (6% 0%) 00 (0% 6) o (6"%¢"%) o
+ 44q + 60q
(@ ¢%) o (0% ¢%)
5 7 4
L ag (49545007 0o (@%: 0™ o o6 (%070 (07 0o 55)
4 3. ,3)13 4 9. .9\2 (,3.,43)12 ° (
(2% ¢°) (0°59°)5 (¢35 43) s
Proof. Squaring both sides of (52) and then employing (53), we have
2(_ 9 9 9
2 _ ¥ (—=q") 2,2/ 9 o(—q")¥(q”)
We have from [3, Eq. 2.2, Theorem 2.1 ].
L _ 90 5 2 |22 (2) 57)
o(—=q) (¢ ' (—¢*) H—=g3)
where
wlg) = (Do’ 47 (58)
(4% ¢%)oo (a1 ¢%)%
Squaring both sides of (57), we find that
1 _906(—619)1 4 3 1202w (3 1663w3 (a3 160%w* (g3 59
@2(_(1)7@8(_6]3){ +4qw(q”) + 12q°w(¢”) + 16¢”w"(¢”) + 16¢"w"(¢”) }- (59)

Multiplying (56) and (59) and then employing (40), (58), (41) and (42), we easily arrive at (55) to complete the
proof.

3. Proofs of theorems :

Proof of Theorem 1.2. Employing (32) in (1), we have

(4% ¢%)8 { (q*¢*)t A (a* ¢4 ( 8;qg)io}
(¢2; '

Ppo(n)q" = 5 +4q (60)
,;) ’ (0%a)% | (6% 620 (¢%: ¢*)n (4% %)
Extracting from both sides of (60), those terms involving only ¢*", and then replacing ¢2 by q, we arrive at (2).
Again, extracting from both sides of (61), those terms involving only ¢?"*!, and then replacing ¢? by ¢, we arrive
at (3).

Proof of Theorem 1.2. Employing (33) in (2), we have

o0 2. 2\12 4. 428 4. 416 4. a4 8. 8\8
T e N Ut { ULt W UL s SOPPRYCut MUST )W}' o
= (@5 a9% | (@%e)2 (%8 (62?2 (g% ¢2)%°

Extracting from both sides of (61), those terms involving only ¢%”, and then replacing ¢ by ¢, we arrive at (4).
Again, extracting from both sides of (61), those terms involving only ¢?"*!, and then replacing ¢? by ¢, we arrive
at (6).
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Now, employing (32) in (3), we have

oo 4. 4\14 ¢
nz:%pp()( (s ) {(qQ;qQ)ii(qg;qs)4 (q2;q2)<1>g

Extracting from both sides of (62), those terms involving only ¢2”, and then replacing ¢ by g, we arrive at (5).
Again, extracting from both sides of (61), those terms involving only ¢?"*!, and then replacing ¢* by ¢, we arrive
at (7).

Proof of Theorem 1.3. Employing (33) and (34) in (4), we derive

2 24 4. 4\56 4. 4\44 4. 4\32
pro (4n)q 4( 4.q4)§o{ 50 )oc 5 + 169 > la 52q Joc 8 +96¢° 2 (4 q2)i§
(@*5a)% L(g25¢2)20 (g5 ¢8) (4% ¢%)20 (g% q) (¢% %)
5 (0% 0% (6% )5 2 (04095 (6% )
20 (g% ¢)o 20 (g% ¢)2 }
4. 4\28 4. 4\16 4. 44 8. 8\8
—|—16q (q4;q4)8 { (q 5 q )oo —|—8q(q 7 q )oo —|—16q2 (q yq )oc(q yq )oo} (63)
U222 (0% )3 (g% %)% (g% %)%

2n+1

Now, extracting from both sides of (63), those terms involving only ¢ , and then replacing ¢2 by ¢, we arrive

at (8).

Again, using (35) in (6), we find

) 42 30 18 4
_ " 12 (¢*q*) (¢*:¢") 2 (g% 4% (a5 4%)
Po(dn +2)q" = 8(¢% ¢%).2{ 12 > 48 > >
,;o (222 (¢% )2 (4% 62)2(¢%: ¢%)% (¢%¢2)%

5 (0% 0M5 (a5 ¢%)
1 64q g } (64)

Now, extracting from both sides of (64), those terms involving only ¢
at (9).

2n+1 and then replacing ¢2 by ¢, we arrive

Proof of Theorem 1.4. Employing (55) in (6), we have

imoo(4n+2)q"=8{(( ¢®)22(q%; ¢°)32 12 (¢% %) 22(q" Q) 78 (4% ¢%)28(¢% ¢*)28

— 7*:¢*)%(q"® t118)16 (0% ¢*)32(q"%; ¢"%) (0% ¢*)%(¢"%: ¢")8
(4% ¢°) A (q% ¢°)22 (4% ¢°)28(¢% ¢°)22
+340¢° (¢% 3)33(6118 q18)7 + 1089 (613,613)32((118 qlg)oo
18. ,18\2
| 748847 (q6 q ) (((J q )) (qlqu )% | 8496¢° (q q ) (6(1 iq )) S (a5,
@ q° ¢ ¢
L T168¢° (6% q%) 22 (0% )3 (a'®; )L} | 4224410 (4% ¢%)12(q% ¢3)2% (¢*%; ¢*®) 12
(¢3:q ) (¢:¢%)%8
(4% ¢%)2 ("% ¢'®)37 (¢%¢%)3%,(¢"%; ¢*®)22
+ 15360 (2% ¢*)22(¢°% ¢°) o + 2560 (2% ¢*)2(¢% )% } (©3)
3n+1

, and then replacing ¢> by ¢, we arrive at (11).
3742 and then replacing ¢> by ¢, we arrive

Extracting from both sides of (65), those terms involving only ¢
Again, extracting from both sides of (61), those terms involving only ¢
at (12).
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Proof of Theorem 1.6. From (3) we have

q = .
4 (a;9)%

i o2n+1) ,  (¢%¢Y5%

n=0
= (¢";¢")% (mod 4), (66)
which implies that
> PPy (8n + 3)g™ = 0 (mod 16), (67)
n=0
> PPy (8n+5)g" = 0 (mod 16), (68)
n=0
> " PPo(8n + 7)g" = 0 (mod 16). (69)
n=0
It follows from (67), (68) and (69) that (18), (20) and (22) holds.
We have from (5)
i o(n+1) o (@0)x
= 4 (¢ )8 (a* qh)%
= (¢*;¢*)2, (mod 2). (70)
From above we can easily derive (14).
Again, we have from (6)
i PPo(4n +2) o _ (4%4°)2
= 8 (¢;9)32
(6% ¢*)?2
= 7((]4;(]4)?: (mod 4) (71)
which implies that
> TPy (8n+ 6)q" = 0 (mod 32), (72)
n=0
> " DPy(16n + 6)¢" = 0 (mod 32), (73)
n=0
> PPy (16n + 10)¢"™ = 0 (mod 32) (74)
n=0
and
oo
> " BPy(16n + 14)¢" = 0 (mod 32). (75)
n=0
It follows from (72), (73), (74) and (75) that (16), (18), (20) and (22) hold.
From (4) we have
i Po(4n) o _ ()% o (1545
= 4 (7:9)85(q% a*)% (495
8. 816
7% 4%)%
= M +4q (¢*;¢")% (mod 4), (76)
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which implies that

ZZTPO(HSTL +8)¢"™ = 0 (mod 16) (77)
n=0
and
ZWO(Mn +12)¢™ = 0 (mod 16). (78)
n=0

It follows from (77) and (78) that (19) and (21) holds.

From (8) we have

iWo(8n+4)qn:{ (2*4q )iﬁ 416 (@i 0)2(ah ) }

—= 80 (¢ 0)38(a* a5 (4:9)22
_ (%)%
= s 160 (6443 (6% ¢%)3 (mod 4), (79)
(g% q*)82
which implies that
Z PPo(32n + 20)¢"™ = 0 (mod 320) (80)
n=0
and
S BPo(32n + 28)¢™ = 0 (mod 320). 81
n=0

Now, (23) and (24) easily follows from (80) and (81).

Again, we have from (64)

42

o0 30 18 4
_ n 12 (0% 4" (q4'q4) 2 (6% 0Y)0(@% %)
PPo(4n + 2)q" = 8(q*; qz)oo{ 12¢ 1 48q

7;) (4% %) a (a5 ¢%) 2 (4% %)% (4% ¢%)% (4% ¢2)>

4. 4\6 8.  g\12
3(0%0%) (a5 0°)
+06dq oot o |, (82)
(%%
which yields that
© 2. 2142
> Ppo(8n+2)q" = 8% (mod 32)
=0 (6:0)2 (g% 4%) 2
=8(¢%¢°)3 (mod 32). (83)

Employing (43) in (83), we find

oo 6 2 2646
S Ppoln + 2)q" = (010 (a5 4™ 2463 (™% 1) + 3248 (6% ¢°)5(6°% ¢%) o

6. .6 36. ,36)3 12. ,12\2 (,18. ,18)3 (mod 32).
;) (455 4%) o (43¢5 ¢30) (% q'2) (g1 1),

(84)

It follows from (84) that
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> PPy (48n + 2)¢" = 0 (mod 8), (85)
n=0
ZWO(ZL&L +10)¢™ = 0 (mod 32), (86)
n=0
3" BBy (48n + 18)¢™ = 0 (mod 8), 87)
n=0
Z PPo(48n + 26)¢"™ = 0 (mod 32), (88)
n=0
o0
Z PPo(48n + 34)¢"™ = 0 (mod 32), (89)
n=0
Z PP (48n 4 42)¢™ = 0 (mod 32). (90)
n=0

Now, (25)—(30) are apparent from above.
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