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Abstract: Period doubling bifurcations have been observed in many different dynamical systems, both dissipative 

and conservative, since Feigenbaum’s first discovery. The theory behind this phenomenon has been widely 
studied. In this paper, we investigate three characteristics of a nonlinear chaotic system described by the equation   

∅ (𝑢) = (𝑝 − 1)𝑢 − 2𝑢3 , where p represents the control parameter as given below: 

1) We first analyze the range of the function and establish a general pathway from the stable system to the chaotic 

region by applying Feigenbaum's theory of period doubling bifurcations. 

2) We determine the accumulation point at p = 3.2146537697423 and the Feigenbaum constant 𝛿 = 

4.669138913547. Additionally, we use time series analysis and the Lyapunov exponent to validate our results 

regarding the bifurcation points and chaotic behavior. 

3) Various scientific methods are used to demonstrate how chaos can be controlled. 

4)  Finally, we pose several interesting open questions for future research. 
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1. Introduction:  

 
The body of the paper should appear like this. Figures and tables should be included here and not at the end. The 

table should be included as follows after giving a single spacing. 

Here we first briefly explain the basic concept of Chaos. Chaos actually represents a natural phenomenon that 

disrupts the stability of systems. It has intrigued both mathematicians and physicists since the late 19th century. 
Henri Poincare, a French mathematician, was a pioneer in this field, introducing a novel analytical approach 

known as the geometry of dynamics. In certain nonlinear discrete models, period doubling bifurcation is observed 

as a pathway to chaotic behavior. The logistic map, a simple quadratic model, exhibits complex dynamics through 

this bifurcation process. In 1964, Lorenz demonstrated in his paper that the logistic map could also exhibit non-

periodic behavior. In the early 1970s, R.M May investigated the period-doubling behavior of the logistic map but 

did not examine the dynamics beyond the accumulation point. Our study is primarily based on the theory 

developed by Feigenbaum.  A few key concepts are highlighted in the following system, [1,2,5,9,21] 

1.1 Orbit: Given a function ∅ :U→U and an element u ∈ U the orbit of u under ∅ is the sequence {u,  ∅ 

(u), ∅  2(u),……  ∅ 𝑛(u )} which is denoted as Ο(u) 

1.2 Fixed Points: A fixed point of a function ∅ is an element u∗ that satisfies ∅(u∗) = u∗. This implies that  ∅𝑛(u∗) 

= u∗ for any positive integer n, meaning the orbit of u∗ is consistently {u∗, u∗,,……,u∗}. 

1.3 Periodic Points and Periodic Orbits: An orbit is termed periodic if it eventually returns to its starting point. 

Specifically, u∗ is a periodic point with period n if   ∅𝑛(u∗)=u∗ for the smallest positive integer n. The 

corresponding orbit is called its periodic orbit. 
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1.4 Stability of a Fixed Point: Consider a fixed-point u such that ∅ (u)=u. If we slightly perturb the orbit by a 

small amount, 𝜖𝑛 such that 𝑢𝑛= u+𝜖𝑛 and expand this perturbation to the first order, we get:  u+𝜖𝑛+1=∅( u+𝜖𝑛) 

                                                         ≈ ∅ ( u)+∅́(𝑢)𝜖𝑛 

                                                         𝜖𝑛+1 ≈ ∅́(𝑢)𝜖𝑛 

From the given the relation , we can determine the stability of a fixed point as follows: 

A fixed point is considered stable if the derivative  ∅́(𝑢) is less than 1, i,e if  ∅́(𝑢) < 1 

and unstable if the derivative  ∅́(𝑢) is greater than 1, i,e  if ∅́(𝑢) > 1. 
 

1.5 Bifurcation: 

A bifurcation happens when a system splits into two different paths or outcomes. In dynamical systems, it often 

refers to a process where the system starts showing more complex behavior as you change a certain parameter. 

For example, if a system initially repeats every step (period 1), it might start repeating every two steps (period 2), 
then every four steps (period 4), and so on, eventually leading to chaotic behavior. This process of doubling the 

repeating cycle is known as period doubling and is a common way for systems to become chaotic, [3,4,11,12, 17] 

1.6 Feigenbaum Delta: 

Feigenbaum delta is a special number that helps predict how a system changes as it goes from a simple repeating 
cycle to a more complex one. This number, about 4.669, was discovered by Mitchell Feigenbaum in the 1970s. It 

measures the ratio between the distances of certain points where the system's behavior changes, helping us 

understand how a system transitions from one type of repeating pattern to another. So the value of 𝛿 can be 

determined as, 

   𝛿 =
𝑝𝑛−𝑝𝑛−1

𝑝𝑛+1−𝑝𝑛
= 4.669…… where 𝑝𝑛  is the value of bifurcation for each 𝑛. 

 

1.7 Accumulation Point:   

An accumulation point is a specific value of a system's parameter beyond which the system starts to behave 

chaotically. It marks the point where the system transitions from having predictable behavior to unpredictable and 

complex behavior. 

2. Main Results: [4, 8, 18, 19, 20] 

2.1 Analysis of stability using linear method: 

 

Let us consider the system ∅ (𝑢) = (𝑝 − 1)𝑢 − 2𝑢3 as our model for studying various dynamical properties. 

Here 𝑝 is the controlling parameter. 

Now 𝜙′(𝑢) = 0 
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)(i At 01 =u , we get |
𝑑𝜙

𝑑𝑢
| = |𝑝 − 1|. 

So 1u  is stable if  11 −p  111 −− p  20  p  

)(ii  At 𝑢2 = − (
𝑝−2

2
)

1

2
, we get  |

𝑑𝜙

𝑑𝑢
| = |2𝑝 − 5|. 

So 2u is stable if 152 −p  1521 −− p  624  p 32  p  

)(ii  At 𝑢3 = (
p−2

2
)

1

2
, we get the same value of |

𝑑𝜙

𝑑𝑢
| as 2u . 

Now we have noticed that the fixed point 01 =u  is stable fixed point for 20  p  and rest of the others are 

unstable for the same definite region. Hence for the definite region we can find the trajectories with the interval  

10  u  approaching the fixed point at 01 =u . 

Within the range 32  p , the picture has changed to different end. Within the range, the fixed point 01 =u  

becomes unstable fixed point with the trajectories moved to the other fixed points. 

In this way when p crosses the value 3 we obtain 1
du

d
 for each fixed points and thus the equilibrium points 

of the model are not stable. So the first bifurcation value of the model is 3. 

 

Fig 1.1: Trajectories for 0 < p < 2 (intersection of the model and ∅(𝑢) = 𝑢 ) 

In the range where 2< p < 3, the situation has changed. Here, the point 𝑢1 = 0 becomes an unstable fixed point, 

meaning that trajectories are now drawn toward the other fixed points. In other words, as we adjust the control 

parameter, the stability of the fixed points switches. 
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                    Fig 1.2:   Trajectories for 2< p < 3 (intersection of the model and ∅(𝑢) = 𝑢 ) 

      

When the value of p surpasses 3, the absolute value of the derivative  |
𝑑𝜙

𝑑𝑢
|   becomes greater than 1 at each fixed 

point. This indicates that the stability of the fixed points in the model is disrupted. Thus, the first bifurcation point 

of the model is approximately 3 

                     

 
                           Fig 1.3:   Intersection of the model and ∅(𝑢) = 𝑢 at p=3. 

 

Next, we look at periodic points with a period of two or more. We do this by solving the equation ∅2(u) =
u                                  

=>  ∅(((p − 1)u − 2u3)= u 

=> (p-1) ∅(u) − 2∅(u)3 = u 

=>(p-1){(p-1)- 2u3}-2{(p-1)- 2u3}3 = u 

=>u − 2pu + p2u + 4u3 − 8pu3 + 6p2u3 − 2p3u3 + 12u5 − 24pu5 + 12p2u5 +
                            24u7 − 24pu7 + 16u9 ==u 

Now using “Mathematica”, we solve the equation and get the solution as follows: 
{𝑢1 → 0}, 

{𝑢2 → −
√−2 + 𝑝

√2
}, 

{𝑢3 →
√−2 + 𝑝

√2
}, 

{𝑢4 → −
√𝑝

√2
}, 

p=2
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{𝑢5 →
√𝑝

√2
}, 

{u6 → −
1

2
√−1 + p − √−3 − 2p + p2}, 

{u7 →
1

2
√−1 + p − √−3 − 2p + p2}, 

{u8 → −√−
1

4
+

p

4
+

1

4
√−3 − 2p + p2}, 

{u9 → √−
1

4
+

p

4
+

1

4
√−3 − 2p + p2}} 

We shall now determine the derivative of  ∅2(u) as follows: 

                  
𝐝𝟐∅𝟐(𝐮)   

𝐝𝐮𝟐  = (−𝟏 + 𝐩)𝟐 − 𝟔(−𝟏 + 𝐩)𝐮𝟐 + 𝟔(𝟏 − 𝐩 + 𝟔𝐮𝟐)(𝐮 − 𝐩𝐮 + 𝟐𝒖𝟑) 𝟐 

Here, the variations in the derivative values of the original map and its second iteration have been noted. When 

the value of p increases through 3, the value  
𝑑𝜙

𝑑𝑢
 passes through -1. Now we have the identical derivative of  

∅2(u) for the fixed points 𝑢9 , 𝑢8, 𝑢7, 𝑢6 which is 7 + 4p − 2𝑝2. Again, we have the identical derivative 

of  ∅
2

(u) for the fixed points 𝑢5 and 𝑢4 which is 1 + 1 + 4p + 4𝑝2 and for the fixed points 𝑢3, 𝑢2 its 

value is 25 − 20p + 4𝑝2. Lastly the derivative of ∅2(u) is found to be 1-2p+𝑝2  i, e   (−1 + p)2. As 

the value of p goes above 3, the behavior of the system changes, causing the values to become unstable. Below 3, 

the function settles on a single value of u while just above this threshold, the system starts to oscillate between 

two values, 𝑢8 and 𝑢6. 

 

 
Fig 1.4: Exchange of the map between two fixed points 

 

When p increases, the derivative ∅2(𝑢) decreases, which stabilizes the fixed points. This stability lasts until p 

reaches approximately 3.1614. At this point, the derivative of  ∅2(u) calculated at the two-cycle fixed points 

becomes -1. As p continues to rise, this derivative becomes even more negative, which makes the fixed points 

unstable. Thus, the second bifurcation point occurs at p = 𝑝2 ≈ 3.1614. After this, the system starts to alternate 

between four fixed points. 

          To find the bifurcation point for higher periods, we use the function I(𝑝𝑛) = 
𝑑𝑛𝑢

𝑑𝑥𝑛  . By calculating  the 

bifurcation points for period one 𝑝1  and period two 𝑝2 manually, we can find the bifurcation point for period 

three 𝑝3 using the bisection method, and so on. We utilize both the Newton-Raphson method and the bisection 

method to identify the bifurcation points for period four and higher. We also create a C program to determine 

these bifurcation points and the experimental value of the Feigenbaum delta. 

 

 

u8 

u6 
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Table 1.1: Calculation of bifurcation points and the Feigenbaum constant 

Periods One of the periodic 
points 

Bifurcation values Feigenbaum delta 

𝛿 =
𝑝𝑛 − 𝑝𝑛−1

𝑝𝑛+1 − 𝑝𝑛𝑛
 

1 0.804582 3  
2 1.025933 3.1614  
4 1.02735400 3.204635086273 4.41856022780 

8 1.041645407697 3.212504592287 4.612549128072 

16 1.03729335598 3.214193334878 4.638279594249 

32 1.041417401572 3.214555151631 4.65439418808 

64 1.050166132090 3.214632648454 4.663454304524 

128 1.042256081010 3.214649246202 4.666546792005 

256 1.04798842756937 3.216528000945 4.662343687382 

512 1.045438990531 3.214653562262 4.6635021853407 

1024 1.048642532948 3.214653725313 4.66543552829 

2048 1.042176548168 3.214653760234 4.669138913547 

 
From the above table we can establish the Feigenbaum delta up to 4.669138913. We shall now draw some graphs 

which show the periodic points in respective periods. 

 

                               
                                            Fig 1.5:   Graph of ∅2(u) and ∅(𝑢) = 𝑢 

 

                                
                                             Fig 1.6:   Graph of ∅4(u) and ∅(𝑢) = 𝑢 

 

The bifurcation diagram of our model, showing the fixed-point positions against the parameter p, demonstrates 

the common path to chaos in our system. 
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                                                               Fig 1.7: bifurcation diagram 

 

2.2: Accumulation Point: 

With the help of the experimental bifurcation points, the sequence of accumulation points {𝑝∞,𝑛}   is determined 

using the following formula. 

𝑝∞,𝑛 =
𝑝𝑛+1 − 𝑝𝑛

𝛿 − 1
+ 𝑝𝑛+1 

The accumulation points for different values of 𝑛 are, 

                                                                       𝑝∞,1 =3.212504392257 

𝑝∞,2 = 3.214570788834 

𝑝∞,3 = 3.214649397765 

𝑝∞,4 = 3.2146537634546 

𝑝∞,5 = 3.214653763484 

𝑝∞,6 = 3.2146537701761 

𝑝∞,7 = 3.2174653769923 

𝑝∞,8 = 3.2165289782498 

𝑝∞,9 = 3.2146537914572 

𝑝∞,10 = 3.21746537697423 

𝑝∞,11 = 3.2146537697423 

The above sequence converges to the value  3.2146537697423  which is the required accumulation point beyond 

which chaos occurs. 

 

2.3: Evaluation of Time Series:[6,7,11,12,15,16] 
 

Here, we aim to quantify chaos through time series analysis. By examining data over time, we can track the 

changes that have occurred in the past, providing valuable insights into the system's behavior. This method is 

particularly useful for predicting future dynamics [1, 3, 6, 16]. 

          To demonstrate this, a series of time series experiments are conducted, all starting from the same initial 

value of 0.8 but varying the parameter values. The time series graphs below display the results for different 

parameter settings. The horizontal axis represents the number of iterations, while the vertical axis shows the values 

obtained after each iteration. 

 

0 
 ∅ 
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Fig 1.8:   Time Series graph of Period 1 with p=3, 

 

After a few iterations here, the points are connected by a line segment. The time series graph shows a stable and 

non-sensitive behavior, where the system eventually reaches the same final state at a fixed point. 
 

 
Fig 1.9:  Time Series graph of Period 2 with p=3.16 

 

Here also, after several iterations, we observe a periodic pattern, where the system alternates    between two fixed 

points with a constant amplitude, and the cycle repeats. Similarly, oscillations between 8 fixed points, 16 fixed 

points, 32 fixed points, 64 fixed points, and so on can also be seen. 
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                                       Fig 2.1: Time Series graph of Period 4 with p=3.2 

 

 
                                       Fig 2.2:    Time Series graph of Period 8 with p=3.212 

 

                             
                                   Fig 2.3:   Time series graph for the chaotic behavior at p=3.4 
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Here we have seen irregular behavior at p=3.4. So, we can conclude that at 3.4, our model starts indicating chaotic 
behavior, a point inside the chaotic region. 

 

2.4     Lyapunov Exponent: [2,5,6,19,21] 

The Lyapunov exponent is a way to measure how chaotic a system is. It helps us understand the behavior of 

dynamic systems, especially in nonlinear systems, where chaos causes randomness and the loss of information, 

making the system’s behavior more complex. The Lyapunov exponent measures how fast the orbits (trajectories) 

of two nearby points diverge or converge after many iterations. For a system described by the equation 

un+1=∅(un), we start with two initial points  u0  and u0 + ε and observe how the distance between them changes 

after several iterations. 

We have now, 

dn ≡ |∅(n)(u0 + ε) − ∅(n)(u0)| 
If the behavior is unpredictable, this distance increases rapidly as n increases. 

So, we have  

𝑑𝑛

𝜀
=

|∅(n)(u0 + ε) − ∅(n)(u0|

𝜀
 ≡ 𝑒𝑛𝜆(𝑢0) 

𝑖. 𝑒., 𝜆(𝑢0) =
1

𝑛
𝑙𝑛 |

∅(n)(u0+ε)−∅(n)(u0

𝜀
| , where 𝜆 is the associated Lyapunov exponent. Let us take limit 𝜀 → 0, with 

the application of the chain rule of differentiation we obtain  

𝜆(𝑢0) =
1

𝑛
ln (|∅′(𝑢0)||∅′(𝑢1)| … … … |∅′(𝑢𝑛−1)|) 

                                                             =
1

𝑛
(ln|∅′(𝑢0)| + 𝑙𝑛|∅′(𝑢1)| + ⋯ … … + 𝑙𝑛|∅′(𝑢𝑛−1)|) 

                                                   𝜆(𝑢0) =
1

𝑛
∑ 𝑙𝑛|∅′(𝑢𝑖)|𝑛−1

𝑖=0  

lastly taking the limit 𝑛 → ∞, we get the expression for Lyapunov exponent 𝜆(𝑢0) is  

𝜆(𝑢0) =
𝑙𝑖𝑚

𝑛 → ∞

1

𝑛
log |

𝑑∅𝑛(𝑢0)

𝑑𝑢
| 

Now, when  𝜆 < 0  we obtain,  
 𝑙𝑖𝑚

𝑛 → ∞
∅(𝑛)(𝑢0) =

𝑙𝑖𝑚
𝑛 → ∞

∅(𝑛)(𝑢0 + 𝜀) 

This means, the system’s behavior is not influenced by the initial value. Again, when 𝜆 > 0, we get  |∅(𝑛)(𝑢0 +

𝜀) − ∅(𝑛)(𝑢0)| and the system shows exponential growth, leading to divergence and indicating chaotic behavior. 

A positive Lyapunov exponent signifies chaos. In summary: 

  If 𝜆 < 0, the system exhibits a periodic solution. If  𝜆 > 0  , the system displays chaotic behavior and if      

𝜆 = 0 , it corresponds to a bifurcation point. 

The Lyapunov exponent is calculated by averaging the logarithm of the derivative of the function at each iteration 

point. Mathematically, it is given as 

Lyapunov exponent(μ) = 1/n ∑ log| ∅(ui)|n
i=0 . 

To compute this, we start with the initial value u0 = 0.8 and a nearby point u0 + ε, using a program in 

‘Mathematica’. The Lyapunov exponents are then calculated for values of the parameter 2 < p < 4. The table 

below presents the Lyapunov exponent values near our accumulation point. 
 

Table 1.2: value of Lyapunov exponent near accumulation point 

Parameter Lyapunov exponent 

3.212 −0.0831565668185093 

3.213 −0.26317485157623466 

3.214 −0.0863262897967682 

3.215 0.17056495686426428 
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                           Fig 2.4: The graph representing the Lyapunov exponent of our model  
 

The graph of the Lyapunov exponent confirms the accumulation point of our model. It shows that part of the graph 

lies on the negative side of the parameter, indicating regular behavior, while the portion on the positive side 

confirms the presence of chaos in our model. 

 

2.5 Controlling of Chaos in our model and in discrete dynamical Systems: [1,9,13,15,16,17] 

 

The natural world often behaves in a chaotic way, and humans have a strong desire to bring order to it. In our 

model, we observe a process called period doubling bifurcation, which leads to chaos. As the value of p increases, 

the system becomes more chaotic, and its long-term behavior becomes unpredictable, especially when considering 
periodic points. This is why controlling chaos is important. 

          In a chaotic system, there are many unstable periodic orbits and a strange attractor. To control chaos, we 

need to stabilize some of these unstable orbits, which can help bring the system to a more regular and predictable 

state. 

          The OGY method, proposed by Ott, Grebogi, and Yourke in 1990, was the first technique for controlling 

chaos. In discrete dynamics, Martiaz and Guemez introduced the instantaneous pulse method to control chaos, 

and Chua modified it in 1997. In this paper, we use a technique called periodic proportional pulses to control 

unstable periodic orbits in the strange attractors of our model. Again, in discrete dynamics, Chau discussed the 

methods of Martiaz and Guemez using a simple one-dimensional chaotic mode 

   un+1=∅(un)   , where ∅ is a function of  I on to itself, I is an interval. 

A new function 𝜑(u) is introduced as: 

𝜑(u) = λ∅𝑞(u), 

where λ is a factor that modifies the function every q iteration. 

To find the fixed points of 𝜑(u), we solve the equation   λ∅𝑞(u)=u and the fixed points are stable if the following 

condition holds: That is if   |
𝑑𝜆∅𝑞(𝑢𝑖)

𝑑𝑢
| < 1 . 

It turns out that the stable fixed points of 𝜑(u) correspond to stable periodic points of the original function ∅, with 

a period of q. 

One more function is introduced as follows, 

𝐾𝑞(𝑢) =
𝑢

∅𝑞(𝑢)

𝑑𝜆∅𝑞(𝑢)

𝑑𝑢
 

From the above equations,|𝐾𝑞(𝑢𝑖)| < 1  , if this condition is satisfied for a fixed point  𝑢𝑖, then with the jolt factor 

λ, we can stabilize the chaotic periodic orbits that pass through this point. By using these techniques, we aim to 

control chaos in our model. In our model, we have seen chaotic behavior when it passes through the period 

doubling cascade. 
After the accumulation point 3.2146537697423 of period doubling cascade the chaotic behavior exists. So, 

picking the parameter value p=3.4 for our model we shall proceed now. 

 



Journal of Applied and Fundamental Sciences    
   

   
 

 

   
JAFS|ISSN 2395-5554 (Print)|ISSN 2395-5562 (Online)|Vol 9(1)|June 2023                                                    49 

 
Fig 2.5: Time series graph at p=3.4 q =1 and p= 3.4, the control curve is drawn in the range -1< 𝐾𝑞(𝑢𝑖) < 1 

 

 
Fig 2.6: Control Curve for the Parameter b=3.4 and q=1 

         

We find that the range for 𝑢𝑖 is from 0 to 0.912581, which is determined by solving the equations    𝐾𝑞(𝑢𝑖) = -1   

and   𝐾𝑞(𝑢𝑖)  = 1 in ‘Mathematica’. When we set 𝑢𝑖= 0.8, we calculate the jolting factor λ (lambda) to be 

approximately 0.7204610951008648. The control procedure then stabilizes the chaotic periodic orbit as given 

below.  

 
Fig 2.7 :  p= 3.4, q=1 and λ = 0.7204610951008648 
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     The control graph in the same range for q=2 and p=3.4 is given below. 

                                 

 
Fig 2.8 :  Control graph at q=2, p=3.4 

 

The range of 𝑢𝑖 here is between 0.5420923411206577 and 1.028167901028882. If we choose u=1.01, we get 

λ=0.6115953003708272. With this value of 𝜆 , the control method stabilizes the chaotic orbits that pass through 

these periodic points, bringing them to a stable orbit with a period of one. 
 

 
Fig 2.9:  p=3.4, q=2, 𝜆 =0.6115953003708272 

 

In the same way, when q=3, q=4 at p=3.4 the range of 𝑢𝑖′s are                                                        

(0.29123078320996315, 1.1487906778431043) and (0.153751,1.15225) respectively.  

 

 
Fig 3.1: Control curve for q=3,p=3.4 
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                                                  Fig 3. 2:  Control curve for q=4, p=3.4 

                          When we take  𝑢𝑖 = 1.1 for q=3 we get 𝜆 = 0.5301838077079213, 

                          Considering𝑥𝑖 = 1.14 for q=4, we get 𝜆 = 0.5301838077079213 

 

 
Fig 3.3:  p=3.4, q=3 and 𝜆=0.5301838077079213 

 

                                                                                                                                                                             

 
Fig 3.4: p=3.4, q=4 and 𝜆=0.5301838077079213 

 

At the end we see that the chaotic behavior of this model can be controlled for lower periodic points. However, it 

becomes challenging to control the chaos when the value of q is higher. 
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3. Conclusion:    

It can be concluded that a cubic map of the form  𝜙 (u) = (p-1) u – 2𝑢3 shows period doubling bifurcations that 

lead to chaos. Bifurcation values are calculated for periods 2, 4, 16, 256, and so on, along with the Feigenbaum 
constant delta. An accumulation point is found beyond which chaotic behavior is observed in the time series 

analysis. Chaos is confirmed by calculating Lyapunov exponents. Lastly, successful methods for controlling the 

chaos are explored. 

Open Problems: The following issues can be explored: 

Consider a polynomial function ∅(𝑢) = 𝑠0 + 𝑠1𝑢 + 𝑠2𝑢2 + ⋯ + 𝑠𝑛𝑢𝑛 

What are the connections between the parameters that lead to chaos? 

What are the conditions under which chaos does not occur? 

What are the parameter ranges that allow the evaluation of different fractal dimensions? 
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