
Journal of Applied and Fundamental Sciences    
   

   

 

    
JAFS|ISSN 2395-5554 (Print)|ISSN 2395-5562 (Online)|Vol 8(2)| December 2022                                            76 

FINDING CORRELATION OF FUZZY DATA 

 
A.S. Wungreiphi, Fokrul A. Mazarbhuiya, and Limainla Kichu 

 
 1Dept. of Mathematics, School of Fundamental and Applied Sciences, Assam Don Bosco University, Assam 

  

*For correspondence. (fokrul.mazarbhuiya@dbuniversity.ac.in)  

    
   

   

 

Abstract: While dealing with the non-fuzzy data, finding statistical parameters like mean, variance, standard 

deviation and correlation coefficient between variables are very common. However, evaluating the value of such 

statistical parameters are not so straightforward in case of fuzzy data. In this article, we propose a new method to 

find the correlation coefficient of two fuzzy sets in terms of their membership values. For this purpose, we define 

covariance using the membership values of the fuzzy sets. We derive the formula for finding correlation 

coefficient for the fuzzy sets over both continuous and discrete universal sets.  We have shown in this paper that 

the value of coefficient lies in the interval [0, 1]. We then demonstrate our work with the help of numerical 

examples 
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1. Introduction:  

 

The body of the paper should appear like this. Figures and tables should be included here and not at the end. The 

table should be included as follows after giving a single spacing.  

 

In the field of mathematics, Zadeh [1] developed the concept of fuzziness. As a result, a number of authors have 

looked into the mathematics of the fuzzy statistical parameters like, mean, median, standard deviation, correlation 

coefficient [2, 3, 4]. In [5], the authors have proposed a method to calculate the correlation coefficient for 

intuitionistic fuzzy by adopting the concept from the conventional statistics where an intuitionistic fuzzy set is 

defined in terms of membership and non-membership functions. The value of the correlation coefficient calculated 

by [5] not only provide the strength of the relationship of intuitionistic fuzzy sets but also shows that the 

intuitionistic fuzzy sets are positively or negatively related. In [6], the authors have defined the correlation of two 

intuitionistic fuzzy sets as sum of the products of membership values plus sum of the products of non-membership 

values. The definition given in [6] coincides with that of [7]. Extending their work in [8], the authors have not 

only introduced the concept correlation and correlation coefficients but also studied the properties of interval-

valued intuitionistic fuzzy sets.  

In [9], the authors have adopted a method from central interval to calculate the correlation coefficient for fuzzy 

data which most of the previous method did not do. The authors of [10] used a straightforward approach based on 

the usual concept of Pearson correlation coefficient to derive management strategy or choice using fuzzy interval 

measures. The authors of [11] have extended the traditional method to see if a set of multivariate fuzzy data can 

be explained by a multivariate normal distribution. 

In most of aforesaid cases the universe of discourse is considered as finite discrete sets. However, finding 

correlation between fuzzy sets defined over continuous set (R) of universe of discourse can be interesting. In 

this article we are proposing a single formula for both continuous and discrete cases. We have also shown that in 

both the cases the correlation coefficient value lies between 0 and 1 as in the case of most of the earlier work.   

The paper is organized as follows. In Section-2, we discuss about problem definition. The proposed method is 

discussed Section-3 along with numerical examples. Finally, we conclude our paper with a brief conclusions and 

lines for future works in Section-4. 

2. Problem Definition 
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Let us consider X to be the universe of discourse. A fuzzy set A is defined as follows  

                                           A={(x, A(x)); A(x)  [0, 1], xX}  [see e. g. [12]] 

where A(x), the membership function representing the membership grade of x in A.  

 

A fuzzy set A is called as normal if  at least one xX, for which A(x) =1. For a fuzzy set A, an -cut A [12] 

is represented by A={xX; A(x)}. If all the -cuts of A are convex sets then A is said to be convex. 

 

A convex normal fuzzy set A on R (real line) with the property that  an x0R such that A(x0) =1, and A(x), 

piecewise continuous is called fuzzy number. A special case of fuzzy number are triangular numbers.  

 

Fuzzy intervals are types of fuzzy numbers such that  [a, b]R such that A(x0)=1for all x0 [a, b], and A(x) 

is piecewise continuous. A special case fuzzy intervals are trapezoidal numbers. 

 

3. Proposed Method 

 

The proposed of finding correlation coefficient of fuzzy sets defined over discrete or continuous universe of 

discourse is given as follows. 

For the two fuzzy A ={(xi, A(xi)); xiX}, and B = {(xi, B(xi)); xiX}over a discrete universe of discourse X={x1, 

x2,…xn}, then we define the correlation coefficient between A and B by the given formula 

                                                   (𝐴, 𝐵) =
𝑐𝑜𝑣(𝐴,𝐵)

√𝑐𝑜𝑣(𝐴,𝐴).𝑐𝑜𝑣(𝐵,𝐵)
                                                                                (1) 

where 𝑐𝑜𝑣(𝐴, 𝐵) = ∑ 𝐴(𝑥𝑖)𝐵(𝑥𝑖)
𝑛

𝑖=0
 = covariance of A and B, 𝑐𝑜𝑣(𝐴, 𝐴) = ∑ (𝐴(𝑥𝑖))

2𝑛

𝑖=0
 = covariance of the 

same fuzzy set A, and 𝑐𝑜𝑣(𝐵, 𝐵) = ∑ (𝐵(𝑥𝑖))
2𝑛

𝑖=0
= covariance of the same fuzzy set B.   

For the two fuzzy A ={(x, A(x)); xXR}, and B = {(x, B(x)); xXR}over a continuous universe of discourse 

X, then we define the correlation coefficient between A and B by the given same formula 

                                                   (𝐴, 𝐵) =
𝑐𝑜𝑣(𝐴,𝐵)

√𝑐𝑜𝑣(𝐴,𝐴).𝑐𝑜𝑣(𝐵,𝐵)
                                                                               (2) 

whereas 𝑐𝑜𝑣(𝐴, 𝐵) = ∫ 𝐴(𝑥)𝐵(𝑥)𝑑𝑥
𝑋

 = covariance of A and B, 𝑐𝑜𝑣(𝐴, 𝐴) = ∫ 𝐴(𝑥)2𝑑𝑥
𝑋

 = covariance of the 

same fuzzy set A, and 𝑐𝑜𝑣(𝐵, 𝐵) = ∫ 𝐵(𝑥)2𝑑𝑥
𝑋

= covariance of the same fuzzy set B.   

Theorem 1. If A ={(x, A(x)); xX}, and B = {(x, B(x)); xX} are two fuzzy sets over a universe of discourse X 

(discrete or continuous), then the correlation coefficient (𝐴, 𝐵) satisfies the following properties 

i) If A=B, then (A, B)=1 

ii) (A, B)= (B, A) 

iii) 0≤(A, B)≤1. 

Proof. Properties i) and ii) are evident from the definition (2).  

To prove property iii) let us take discrete case. Let A={(xi, A(xi)); xiX}, and B = {(xi, B(xi)); xiX} are two 

fuzzy sets over a discrete universe of discourse X={x1, x2,…xn}. The correlation coefficient of A and B is given 

by (1) as follows  

                   (𝐴, 𝐵) =
𝑐𝑜𝑣(𝐴,𝐵)

√𝑐𝑜𝑣(𝐴,𝐴).𝑐𝑜𝑣(𝐵,𝐵)
 

                            =  
∑ 𝐴(𝑥𝑖)𝐵(𝑥𝑖)
𝑛
𝑖=0

√∑ (𝐴(𝑥𝑖))
2𝑛

𝑖=0 .∑ (𝐵(𝑥𝑖))
2𝑛

𝑖=0

=
𝐴(𝑥1)𝐵(𝑥1)+𝐴(𝑥2)𝐵(𝑥2)+⋯+𝐴(𝑥𝑛)𝐵(𝑥𝑛)

√(𝐴(𝑥1)
2+𝐴(𝑥2)

2+⋯+𝐴(𝑥𝑛)
2).(𝐵(𝑥1)

2+𝐵(𝑥2)
2+⋯+𝐵(𝑥𝑛)

2)
               (3) 

Obviously (𝐴, 𝐵)≥0. It remains to show that (𝐴, 𝐵) ≤ 1.  
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  
𝐴(𝑥1)𝐵(𝑥1)+𝐴(𝑥2)𝐵(𝑥2)+⋯+𝐴(𝑥𝑛)𝐵(𝑥𝑛)

√(𝐴(𝑥1)
2+𝐴(𝑥2)

2+⋯+𝐴(𝑥𝑛)
2).(𝐵(𝑥1)

2+𝐵(𝑥2)
2+⋯+𝐵(𝑥𝑛)

2)
  ≤  1     [using (3)] 

 ( 𝐴(𝑥1)𝐵(𝑥1) + 𝐴(𝑥2)𝐵(𝑥2) + ⋯+ 𝐴(𝑥𝑛)𝐵(𝑥𝑛))2≤(𝐴(𝑥1)
2 + 𝐴(𝑥2)

2 +⋯+ 𝐴(𝑥𝑛)
2). (𝐵(𝑥1)

2 + 𝐵(𝑥2)
2 +

⋯+ 𝐵(𝑥𝑛)
2)   [using cross multiplication and then squaring]  

(𝐴(𝑥1)
2 + 𝐴(𝑥2)

2 +⋯+ 𝐴(𝑥𝑛)
2). (𝐵(𝑥1)

2 + 𝐵(𝑥2)
2 +⋯+ 𝐵(𝑥𝑛)

2) −(𝐴(𝑥1)𝐵(𝑥1) + 𝐴(𝑥2)𝐵(𝑥2) +  …+
𝐴(𝑥𝑛)𝐵(𝑥𝑛))2≥0                                                                                                                                           (4) 

If we can show that (4) is true then we can claim that (𝐴, 𝐵) ≤ 1 is true. For this purpose, let us use Mathematical 

Induction.  

For n=1, (4) is true and hence the result is obvious.  

Putting n=2 in (4), we get 

  (𝐴(𝑥1)
2 + 𝐴(𝑥2)

2). (𝐵(𝑥1)
2 + 𝐵(𝑥2)

2) − (𝐴(𝑥1)𝐵(𝑥1) + 𝐴(𝑥2)𝐵(𝑥2))
2
  

= (𝐴(𝑥1)𝐵(𝑥2) − 𝐴(𝑥2)𝐵(𝑥1))
2
≥ 0  

Thus the result (4) is true for n=2. Let us suppose (4) is true for n=k, therefore 

(𝐴(𝑥1)
2 + 𝐴(𝑥2)

2 +⋯+ 𝐴(𝑥𝑘)
2). (𝐵(𝑥1)

2 + 𝐵(𝑥2)
2 +⋯+ 𝐵(𝑥𝑘)

2) −(𝐴(𝑥1)𝐵(𝑥1) + 𝐴(𝑥2)𝐵(𝑥2) + ⋯+
𝐴(𝑥𝑘)𝐵(𝑥𝑘))2≥0                                                                                                                                           (5) 

We want show that (4) is true for n=k+1.  

(𝐴(𝑥1)
2 + 𝐴(𝑥2)

2 +⋯+ 𝐴(𝑥𝑘)
2 + 𝐴(𝑥𝑘+1)

2). (𝐵(𝑥1)
2 + 𝐵(𝑥2)

2 +⋯+ 𝐵(𝑥𝑘)
2 + 𝐵(𝑥𝑘+1)

2) − 

(𝐴(𝑥1)𝐵(𝑥1) + 𝐴(𝑥2)𝐵(𝑥2) + ⋯+ 𝐴(𝑥𝑘)𝐵(𝑥𝑘) + 𝐴(𝑥𝑘+1)𝐵(𝑥𝑘+1))2 

=[(𝐴(𝑥1)
2 + 𝐴(𝑥2)

2 +⋯+ 𝐴(𝑥𝑘)
2). (𝐵(𝑥1)

2 + 𝐵(𝑥2)
2 +⋯+ 𝐵(𝑥𝑘)

2) − ( 𝐴(𝑥1)𝐵(𝑥1) + 𝐴(𝑥2)𝐵(𝑥2) + ⋯+
𝐴(𝑥𝑘)𝐵(𝑥𝑘))2]+ (𝐴(𝑥1)

2 + 𝐴(𝑥2)
2 +⋯+ 𝐴(𝑥𝑘)

2). (𝐵(𝑥𝑘+1)
2) + (𝐴(𝑥𝑘+1)

2). (𝐵(𝑥1)
2 + 𝐵(𝑥2)

2 +⋯+
𝐵(𝑥𝑘)

2) + 𝐴(𝑥𝑘+1)
2𝐵(𝑥𝑘+1)

2-2 (𝐴(𝑥1)𝐵(𝑥1) + 𝐴(𝑥2)𝐵(𝑥2) + ⋯+ 𝐴(𝑥𝑘)𝐵(𝑥𝑘)). 𝐴(𝑥𝑘+1)𝐵(𝑥𝑘+1)) - 

𝐴(𝑥𝑘+1)
2𝐵(𝑥𝑘+1)

2 

≥(𝐴(𝑥1)
2𝐵(𝑥𝑘+1)

2 − 2𝐴(𝑥1)𝐵(𝑥𝑘+1)𝐴(𝑥𝑘+1)𝐵(𝑥1) + 𝐴(𝑥𝑘+1)
2𝐵(𝑥1)

2 + (𝐴(𝑥2)
2𝐵(𝑥𝑘+1)

2 −
2𝐴(𝑥2)𝐵(𝑥𝑘+1)𝐴(𝑥𝑘+1)𝐵(𝑥2) + 𝐴(𝑥𝑘+1)

2𝐵(𝑥2)
2 +⋯ + (𝐴(𝑥𝑘)

2𝐵(𝑥𝑘+1)
2 − 2𝐴(𝑥𝑘)𝐵(𝑥𝑘+1)𝐴(𝑥𝑘+1)𝐵(𝑥𝑘) +

𝐴(𝑥𝑘+1)
2𝐵(𝑥𝐾)

2    [using (5)] 

=(𝐴(𝑥1)𝐵(𝑥𝑘+1) − 𝐴(𝑥𝑘+1)𝐵(𝑥1))
2
+ (𝐴(𝑥2)𝐵(𝑥𝑘+1) − 𝐴(𝑥𝑘+1)𝐵(𝑥2))

2
+⋯+ (𝐴(𝑥𝑘)𝐵(𝑥𝑘+1) −

𝐴(𝑥𝑘+1)𝐵(𝑥𝑘))
2
 

≥ 0, since it is the sum of the square terms. 

Hence, by the method of Mathematical Induction (4) is true for all positive integer n and thus (3) also. Therefore, 

0≤(A, B)≤1. Similarly, it is true for any pair of fuzzy sets A, and B defined over XR. Thus the formula for 

finding correlation coefficient is valid for any type of fuzzy sets.  

Let us now take numerical examples, to validate our claim. Let X={x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} be a 

finite set of discrete elements. Let A={(x1, 0.1), (x2, 0.5), (x3, 0.6), (x4, 0.3), (x5, 0), (x6, 0.1), (x7, 0.9), (x8, 1), 

(x9, 0.8), (x10, 0.3)} and B={(x1, 0.2), (x2, 0.6), (x3, 0.3), (x4, 0.2), (x5, 0.1), (x6, 0.9), (x7, 0.8), (x8, 0.2), (x9, 

0.7), (x10, 0.1)} be two fuzzy sets defined over X. Then 

𝑐𝑜𝑣(𝐴, 𝐵) = (0.1)(0.2) + (0.5)(0.6) + (0.6)(0.3) + (0.3)(0.2) + (0)(0.1) + (0.1)(0.9) + (0.9)(0.8)
+ (1)(0.2) + (0.8)(0.7) + (0.3)(0.1) 

                         = 2.16 

𝑐𝑜𝑣(𝐴, 𝐴) = (0.1)2 + (0.5)2 + (0.6)2 + (0.3)2 + (0)2 + (0.1)2 + (0.9)2 + (1)2 + (0.8)2 + (0.3)2 
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                        =3.6 

𝑐𝑜𝑣(𝐵, 𝐵) = (0.2)2 + (0.6)2 + (0.3)2 + (0.2)2 + (0.1)2 + (0.9)2 + (0.8)2 + (0.2)2 + (0.7)2 + (0.1)2 

                        = 2.53 

Therefore (𝐴, 𝐵) =
2.16

√(3.6)(2.53)
 =0.71572≤1 

Obviously (𝐴, 𝐵) ≥ 0, (𝐴, 𝐴) = 1and (𝐵, 𝐵) = 1. 

Let A={{(x1, 0.2), (x4, 0.4), (x5, 1), (x7, 0.7) , (x10, 0.3)}, and B={(x2, 0.3), (x3, 0.5), (x6, 0.2), (x8, 1), (x9, 

0.7)} be two fuzzy sets on X, then  

𝑐𝑜𝑣(𝐴, 𝐵) = (0.2)(0) + (0)(0.3) + (0)(0.5) + (0.4)(0) + (1)(0) + (0)(0.2) + (0.7)(0) + (0)(1)
+ (0)(0.7) + (0.3)(0)           

                            =0 

 𝑐𝑜𝑣(𝐴, 𝐴) = (0.2)2 + (0.4)2 + (1)2 + (0.7)2 + (0.3)2=1.78 and 𝑐𝑜𝑣(𝐵, 𝐵) = (0.3)2 + (0.5)2 + (0.2)2 +
(1)2 + (0.7)2 = 1.87                                                                       

Therefore, (𝐴, 𝐵) = 0  

Again, let XR and A=[2, 4, 6, 9], B=[4, 6, 8, 10] are two trapezoidal number on X, then the membership functions 

of A and B are given respectively by 

                                                      𝐴(𝑥) =

{
 
 

 
 
        0,             𝑥 ≤ 2, 𝑥 ≥ 9

𝑥−2

2
, 2 ≤ 𝑥 ≤ 4

1, 4 ≤ 𝑥 ≤ 6
9−𝑥

3
, 6 ≤ 𝑥 ≤ 9

   

}
 
 

 
 

                                                  (6) 

                                                      𝐵(𝑥) =

{
 
 

 
 
         0,            𝑥 ≤ 4, 𝑥 ≥ 10  

𝑥−4

2
, 4 ≤ 𝑥 ≤ 6

1, 6 ≤ 𝑥 ≤ 8
10−𝑥

2
, 8 ≤ 𝑥 ≤ 10 }

 
 

 
 

                                                (7) 

Now 𝑐𝑜𝑣(𝐴, 𝐵) = ∫ (𝐴(𝑥)
𝑋

)(𝐵(𝑥))𝑑𝑥 = ∫ 𝐴(𝑥)𝐵(𝑥)𝑑𝑥                                
10

2
 

= ∫
(𝑥 − 2)

2
(0)𝑑𝑥 + ∫ (1)

(𝑥 − 4)

2
𝑑𝑥 + ∫

(9 − 𝑥)

3
(1)𝑑𝑥 + ∫

(9 − 𝑥)

3

(10 − 𝑥)

2
𝑑𝑥 + ∫ (0)

(10 − 𝑥)

2
𝑑𝑥

10

9

9

8

8

6

6

4

4

2

 

  = 0.8333333333 

       𝑐𝑜𝑣(𝐴, 𝐴) = ∫ (𝐴(𝑥)2
𝑋

𝑑𝑥 = ∫ 𝐴(𝑥)2𝑑𝑥                                
9

2
 

= ∫ (
(𝑥 − 2)

2
)

2

𝑑𝑥 + ∫ (1)2𝑑𝑥 + ∫ (
9 − 𝑥

3
)
2

𝑑𝑥
9

6

6

4

4

2

 

                                               = 3.6666667 

    𝑐𝑜𝑣(𝐵, 𝑏) = ∫ (𝐵(𝑥)2
𝑋

𝑑𝑥 = ∫ 𝐵(𝑥)2𝑑𝑥                                
10

4
 

= ∫ (
(𝑥 − 4)

2
)

2

𝑑𝑥 + ∫ (1)2𝑑𝑥 + ∫ (
10 − 𝑥

2
)
2

𝑑𝑥
10

8

8

6

6

4
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                                             = 3.5 

Therefore, (𝐴, 𝐵) =
0.8333333333

√(3.6666667)(3.5)
 = 0.23262 ≤1. 

Also (𝐴, 𝐴) = 1, (𝐵, 𝐵) = 1. If AB= (empty set), then (𝐴, 𝐵) = 0 as 𝑐𝑜𝑣(𝐴, 𝐵) = 0.  

4. Conclusion  

 

In this article, we have proposed a new definition of correlation coefficient of fuzzy data. We have formulated it 

in terms of covariance of two fuzzy sets. For this purpose, the covariance of two fuzzy sets is defined using the 

member functions or values of the fuzzy sets. The formula can be applicable for both discrete and continuous 

cases. For discrete case, the summation is used and for continuous case integration over the universe of discourse 

is used. We have also shown that the value of the correlation coefficient lies between 0 and 1. Using numerical 

examples, we have shown the validity of our method. In future, we will try to use the method in any real system 

with fuzzy data.   
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