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Abstract: In this paper, we consider a two dimensional nonlinear chaotic model as 

∅𝛽(𝑥, 𝑦) = (𝛼𝑥 + 𝑦, 𝛽𝑥 + 𝛾𝑦 − 𝑥3) where 𝛼,𝛽,𝛾 are adjustable parameters. M.J. Feigenbaum showed around 

1980 how a route can be established from a regular system to a chaotic system in many nonlinear systems. Here 

we establish the universal route with the above mentioned model by determining the sequence of bifurcation 

points with the help of numerical methods and computer software. Time series analysis is carried out with different 

graphs in order to reveal how stability and instability of the periodic points appear in different ranges of the 

parameters. We evaluate Lyapunov exponents along with their graphs in order to confirm the regular and chaotic 

regions of the system. Different techniques are applied how to control the chaos i.e., how to go from the chaotic 

region to the regular one.  Many other relevant results are discussed, and a few open problems are posed. 
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1. Introduction:  

 

In the 21st Century, there has been a remarkable increase of research interest in dynamical systems and fractal 

geometry. However, during the past century Feigenbaum has proposed [6] the period-doubling phenomena of 

one-dimensional maps of the form 

𝑥𝑛+1 = 𝑓𝑚(𝑥𝑛) = 𝑓(𝑥𝑛 , 𝑚) 

The foundation of his theory was that, when an orbit is optimally stable, the arrangement of periodic points that 

make up it may be described by a set of universal functions. These are roughly the functions 

(−1)𝑙𝜉𝑙𝑓
2𝑙𝑏(𝑥 /𝜉𝑙 , 𝑚𝑙+𝑛̂) 

With a sufficiently big l(l is a positive integer)  and adhering to the functional recursion formula, where is the 

𝑓𝑘maximum stability point of an orbit, stands for 𝑘𝑡ℎthe iterate of f, 𝜉𝑘 is a scaling factor and 𝑚 = 𝑚𝑘̂ is the 

iterate of 2𝑘𝑏 − period orbit. Note, the points of maximum stability also converge to m in the limit in addition to 

the periodic orbit bifurcation points denoted by 𝑚𝑙 for2𝑙𝑏 -periodic orbit. It can be demonstrated that the 

convergence rate of 𝑚𝑙̂the so-called Feigenbaum ratio  is determined as an eigenvalue associated with a linear 

functional equation that is derived from a fixed point equation for the recursion formula mentioned above. This 

leads to the important conclusion that the convergence rate is universal. The value of    in the dissipative situation 

is 4.6692016091029….., and 8.721097200...in the conservative case. 

Furthermore, the sequence {𝑚𝑛} is set up such that a periodic trajectory of period develops at 2𝑛 and that all other 

periodic trajectories of period 2𝑟(𝑟 < 𝑛) continue to be unstable. In addition, the Feigenbaum theory claims that 

all neighbouring points, excluding those that are part of these unstable orbits and their stable manifolds, are 

attracted to F under iterations of the family f at  𝑚 = 𝑚∞[8]. This invariant set F of Cantor type is encompassed 

by infinitely many unstable periodic orbits of period 2𝑛(n=0,1,2,…)[1,2,12,13]. 
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2. Methodology: 

 

The main aim in this paper is to demonstrate the above well-defined objectives of a two-dimensional discrete map: 

∅𝛽 = (𝑓, 𝑔): 𝑅2 → 𝑅2 .                                                     (1) 

defined by f(x,y)=x+y,  g(x,y)=x+y-x3,where , and are adjustable parameters. By creating some suitable 

numerical algorithms, we set out our journey for the sole study and investigation. 

For our convenience we write 𝛼 =
1

3
 and 𝛾 = −1.The Jacobian of ourfunction i 

𝐽1 = [
𝑓𝑥 𝑓𝑦

𝑔𝑥 𝑔𝑦
] = [

1

3
1

𝛽 − 3𝑥2 −1
] 

And det (𝐽1) = 2𝛽 −
13

3
. Here,   is dissipative if||<

13

3
, area-preserving if =

13

3
and area-expanding if||>

13

3
. We 

want to emphasize that the stability theory and our map's Jacobian matrix are closely related.  If  𝜆1, 𝜆2are the 

eigenvalues of J1, then as is widely known, 

𝜆1,2 =
1

3
[(𝑡𝑟𝑎𝑐𝑒(𝐽1) +

1

3
) ± √𝐷] , where, as usual, we define 

𝑡𝑟𝑎𝑐𝑒(𝐽1) = 𝑓𝑥 + 𝑔𝑦 , 𝑑𝑒𝑡(𝐽1) = 𝑓𝑥𝑔𝑦 − 𝑓𝑦𝑔𝑥, 

𝐷 = [1 − 9𝑑𝑒𝑡(𝐽1)],  𝜆1 + 𝜆2 = 𝑡𝑟𝑎𝑐𝑒(𝐽1)𝑎𝑛𝑑 𝜆1𝜆2 = 𝑑𝑒𝑡(𝐽1). 

These relationships provide us with    𝜆1 + 𝜆2 = −
2

3
and  𝜆1𝜆2 =

18𝛽−39

9
.  

Now, one of the eigenvalues of 𝐽1 has to be -1 for a period-doubling bifurcation. As a result, the previous 

eigenvalue relations yield the equation 𝜆1 − 1 = −
2

3
 , and when we plug x=√𝛽 −

4

3
 this equation into another, we 

obtain the first period-doubling bifurcation point as =2 . The fixed point remains stable for values of  falling 

within the interval I=(0,2 ) and a stable periodic trajectory with period 1 emerges around it . The stable fixed point 

gradually becomes unstable as the value of 𝛽 is increased, and two points, such as 𝑥21̅̅ ̅̅ (𝛽)and𝑥22̅̅ ̅̅ (𝛽), create a 

stable periodic trajectory with a period of 2 around it.  

          We must now redirect our focus from the first iteration of our map to the second iteration, which is provided 

by 


𝛽

2

. 

 ∅𝛽
2 (𝑥, 𝑦) = (

1

9
𝑥 + 𝛽𝑥 −

2

3
𝑦 − 𝑥3, 𝛽𝑦 −

2

3
𝛽𝑥 + 𝑦 +

26

27
𝑥3 − 𝑦3 −

1

3
𝑥2𝑦 − 𝑥𝑦2) 

 Solving the equation 𝜑𝛽
2 (x,y)= (x,y) yields the periodic points of period-2 for the map, which are the fixed points 

of 


𝛽

2

 .The solutions of this 9th degree equation are found to be 

(x=0,y=0),(𝑥 = √𝛽, 𝑦 =
4√𝛽

3
),(𝑥 = √𝛽, 𝑦 =

−4√𝛽

3
),(𝑥 = −

√−4+3𝛽

√3
, 𝑦 = −

2√−4+3𝛽

3√3
), 

(𝑥 =
√−4+3𝛽

√3
, 𝑦 =

2√−4+3𝛽

3√3
),(𝑥 = −

√−2+√3𝛽−√3√−4−4𝛽+3𝛽2

√6
, 𝑦 =

1

6
{4√

2

3
√−2 + 3𝛽 − √3√−4 − 4𝛽 + 3𝛽2      −  3 √

3

2
𝛽√−2 + 3𝛽 − √3√−4 − 4𝛽 + 3𝛽2 +

1

2
√

3

2
(−2 + 3𝛽 −

√3√−4 − 4𝛽 + 3𝛽2)
3/2

}), (𝑥 =
√−2+√3𝛽−√3√−4−4𝛽+3𝛽2

√6
, 𝑦 =
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1

6
{−4√

2

3
√−2 + 3𝛽 − √3√−4 − 4𝛽 + 3𝛽2      +  3 √

3

2
𝛽√−2 + 3𝛽 − √3√−4 − 4𝛽 + 3𝛽2 −

1

2
√

3

2
(−2 + 3𝛽 −

√3√−4 − 4𝛽 + 3𝛽2)
3/2

}) , (𝑥 = −
√−2+√3𝛽+√3√−4−4𝛽+3𝛽2

√6
, 𝑦 =

1

6
{4√

2

3
√−2 + 3𝛽 + √3√−4 − 4𝛽 + 3𝛽2      −  3 √

3

2
𝛽√−2 + 3𝛽 + √3√−4 − 4𝛽 + 3𝛽2 +

1

2
√

3

2
(−2 + 3𝛽 +

√3√−4 − 4𝛽 + 3𝛽2)
3/2

}),  (𝑥 =
√−2+√3𝛽+√3√−4−4𝛽+3𝛽2

√6
, 𝑦 =

1

6
{−4√

2

3
√−2 + 3𝛽 + √3√−4 − 4𝛽 + 3𝛽2      +  3 √

3

2
𝛽√−2 + 3𝛽 + √3√−4 − 4𝛽 + 3𝛽2 −

1

2
√

3

2
(−2 + 3𝛽 +

√3√−4 − 4𝛽 + 3𝛽2)
3/2

}). 

The Jacobian matrix J2  (say) of the second iteration of our map is given by 

𝐽2=[

1

9
− 3𝑥2 + 𝛽 −

2

3

3𝑥2 − (
𝑥

3
+ 𝑦)

2

−
2𝛽

3
1 − 3 (

𝑥

3
+ 𝑦)

2

+ 𝛽
] 

 

If 𝜇1, 𝜇2 are the eigenvalues of J2, then  𝜇1+𝜇2 =
10

9
− 3 [𝑥2 + (

𝑥

3
+ 𝑦)

2

] + 2𝛽   and 

𝜇1. 𝜇2 =
1

9
−

10

9
𝑥2 + 𝑥4 −

2𝑥𝑦

3
+ 6𝑥3𝑦 − 𝑦2 + 9𝑥2𝑦2 +

2

3
𝛽 −

10

3
𝑥2𝛽 − 2𝑥𝑦𝛽 −  3𝑦2𝛽 + 𝛽2 

If we set  𝜇1 = −1, then the above equations lead to  

𝑥4 + 𝛽2 + 𝛽 (
2

3
−

10

3
𝑥2 − 3𝑦2 − 2𝑥𝑦) + 6𝑥3𝑦 + 𝑥2 (9𝑦2 −

40

9
) − 4𝑦 (𝑦 +

2

3
𝑥) −

20

9
= 0     (2) 

Putting 𝑥 =
√−4+3𝛽

√3
 𝑎𝑛𝑑 𝑦 =

2√−4+3𝛽

3√3
  in (2) and solving for 𝛽, we get =2.66666667 as the second bifurcation 

value. We must take into account the fourth iteration of our model after determining the second bifurcation value. 

In that situation, we have seen that the analytical discussion in the case of the periodic points of period-2 presents 

a tremendous computing challenge. Therefore, further analysis is essentially difficult at this point, and we must 

turn to a numerical method [18,20].  The numerical methods listed below are effective for our objective. 

 2.1 Numerical Method for Obtaining Periodic Point: 

 

We have discovered that one of the most accurate numerical techniques for our needs is the Newton-Raphson 

formula (also known as Newton's iteration formula), which may be used to identify a periodic fixed point[9,12]. 

Furthermore, it provides a periodic point with quick convergence. 

The Newton’s iteration formula is 

𝑥𝑛+1̅̅ ̅̅ ̅̅ =  𝐷(𝜓)(𝑥𝑛̅̅ ̅)−1𝜓(𝑥𝑛)̅̅̅̅̅, 𝑛 = 0,1,2, … 

where𝐷(𝜓)(𝑥)̅̅ ̅ is the Jacobian of the map 𝜓 at the vector𝑥̅. We see that in our situation, where k is the suitable 

duration, this map𝜓 is equal to𝜙𝛽
𝑘 − 𝐼. The zero(s) of a map are actually provided by the Newton formula, and in 

order to use this numerical tool with our map, one requires a number of the recurrence equations that are provided 

below. Let the initial data be (x0,y0), then 

∅𝛽(𝑥0, 𝑦0)=(𝛼𝑥0 + 𝑦0, 𝛽𝑥0 + 𝛾𝑦0 − 𝑥0
3)=(𝑥1, 𝑦1) 

∅𝛽
2 (𝑥0, 𝑦0) = ∅𝛽 (∅𝛽(𝑥0, 𝑦0)) = ∅𝛽(𝑥1, 𝑦1)=(𝑥2, 𝑦2) 
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Preceding in this manner the following recurrence formula for the map 𝜙𝛽(𝑥, 𝑦) can be established as 𝑥𝑛=𝛼𝑥𝑛−1 +

𝑦𝑛−1 and 𝑦𝑛 = 𝛽𝑥𝑛−1 + 𝛾𝑦𝑛−1 − 𝑥𝑛−1
3  ; n=1,2,3,… 

Since the Jacobian of 𝜙𝛽 
𝑘 ( ktimes of the map𝜙𝛽) is the product of the Jacobian of each iteration of the map, we 

proceed as follows to describe our recurrence mechanism for the Jacobian Matrix. The Jacobian J1 for the 

transformation, ∅𝛽(𝑥0, 𝑦0)=(𝛼𝑥0 + 𝑦0, 𝛽𝑥0 + 𝛾𝑦0 − 𝑥0
3) is 

𝐽1 = [

1

3
1

𝛽 − 3𝑥0
2 −1

]=[
𝐸1 𝐹1

𝐺1 𝐻1
], where 𝐸1 =  

1

3
, 𝐹1 = 1, 𝐺1 =  𝛽 − 3𝑥0

2, 𝐻1 =  −1. 

Next the Jacobian J2 for the transformation 𝜙𝛽
2 = (𝑥0, 𝑦0) = (𝑥2, 𝑦2) is the product of the Jacobian for the 

transformation 

∅𝛽(𝑥1, 𝑦1) = (𝛼𝑥1 + 𝑦1, 𝛽𝑥1 + 𝛾𝑦1 − 𝑥1
3) 

And ∅𝛽(𝑥0, 𝑦0)=(𝛼𝑥0 + 𝑦0 , 𝛽𝑥0 + 𝛾𝑦0 − 𝑥0
3) 

So, we obtain 

𝐽2 = [

1

3
1

𝛽 − 3𝑥2 −1
] [

𝐸1 𝐹1

𝐺1 𝐻1
] = [

1

3
𝐸1 + 𝐺1

1

3
𝐹1 + 𝐻1

(𝛽 − 3𝑥2)𝐸1 − 𝐺1 (𝛽 − 3𝑥2)𝐹1 − 𝐻1

] = [
𝐸2 𝐹2

𝐺2 𝐻2
] 

Where 𝐸2 =
1

3
𝐸1 + 𝐺1, 𝐹2 =  

1

3
𝐹1 + 𝐻1, 𝐺2 = (𝛽 − 3𝑥2)𝐸1 − 𝐺1, 𝐻2 = (𝛽 − 3𝑥2)𝐹1 − 𝐻1. 

Continuing in this manner, we obtain the Jacobian for 𝜙𝛽
𝑘 as 𝐽𝑚 = [

𝐸𝑚 𝐹𝑚

𝐺𝑚 𝐻𝑚
]with a set of recursive formula as 

𝐸𝑚 =
1

3
𝐸𝑚−1 + 𝐺𝑚−1, 𝐹𝑚 = 𝛼𝐹𝑚−1 + 𝐻𝑚−1, 𝐺𝑚 = (𝛽 − 3𝑥𝑚−1

2 )𝐸𝑚−1 − 𝐺𝑚−1, 𝐻𝑚 = (𝛽 − 3𝑥𝑚−1
2 )𝐹𝑚−1 −

𝐻𝑚−1where m= 2,3,4,… 

Since the fixed point of the map 𝜙𝛽 is a zero of the map 𝜓(𝑥, 𝑦) = 𝜙𝛼𝛽(𝑥, 𝑦) − (𝑥, 𝑦) the Jacobian of  𝜓𝑘 is given 

by 𝐽𝑘 − 𝐼 = [
𝐸𝑘 − 1 𝐹𝑘

𝐺𝑘 𝐻𝑘 − 1
]. Its inverse is  

1
11

( )
1

k k

k

k k

H F
J I

G E

−
− − 

− =  
− −    

where ∆= (𝐸𝑘 − 1)(𝐻𝑘 − 1)𝐹𝑘𝐺𝐾, the Jacobian determinant. So, Newton’s method gives the following 

recurrence formula in order to yields a periodic point of 𝜙𝛽
𝑘 

𝑥𝑛+1 = 𝑥𝑛 −
(𝐻𝑘 − 1)(𝑥∗

𝑛 − 𝑥𝑛) − 𝐹𝑘(𝑦𝑛
∗ − 𝑦𝑛)

∆
 

𝑦𝑛+1 = 𝑦𝑛 −
(−𝐺𝑘)(𝑥𝑛

∗ − 𝑥𝑛) + (𝐸𝑘 − 1)(𝑦𝑛
∗ − 𝑦𝑛)

∆
 

where  ∅𝑘(𝑥𝑛̅̅ ̅) = ∅𝑘(𝑥𝑛 , 𝑦𝑛) = (𝑥𝑛
∗ , 𝑦𝑛

∗) 

 

2.2 Numerical Method for Finding Bifurcation Values: 

 

The Jacobian Matrix of the map  𝜙𝛽
𝑘 represented by Newton's technique first requires us to recall our recurrence 

relations, and the eigenvalue theory [10] which provide the relation at the bifurcation value 𝐸𝑘 + 𝐻𝑘 = −1 − ∆. 

Yet again, according to the Feigenbaum theory  
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𝛽𝑛+2 ≈ 𝛽𝑛+1 +
𝛽𝑛+1−𝛽𝑛

𝛿
     (3) 

where𝑛 = 1,2,3, …, is the kth bifurcation point of the parameter 𝛽, and  is the Feigenbaum universal constant.The 

first two bifurcation values,𝛽1 and𝛽2, for our map have already been determined. Furthermore, with the value of 

=0.3, it is simple to locate the periodic sites for these 𝛽1and𝛽2. We observe that if we put I=𝐸𝑘 + 𝐻𝑘 + 1 + ∆, I 

proves to be a function of the parameter . When I() equals zero, the bifurcation value of  for the period k 

occurs. This indicates that one needs the zero of the function I(), which is provided by the Secant Method in 

Numerical analysis[8,9,11], in order to obtain a bifurcation value of period k. 

𝛽𝑛+1 = 𝛽𝑛 −
𝐼(𝛽𝑛)(𝛽𝑛 − 𝛽𝑛−1)

𝐼(𝛽𝑛) − 𝐼(𝛽𝑛−1)
 

Then, an approximation of 𝛽3is obtainedby using the relation (3). We use 𝛽3
́  and a slightly bigger value, say, 𝛽3

́ +
10−4 as the two beginning values to apply this approach and finally achieve 𝛽3as the Secant method requires two 

initial values. Similar to this, the same method is used to get the successive bifurcation values 𝛽4, 𝛽5, …etc., 

according to our needs. We create the table below for the first ten bifurcation points for the parameter = 1/3with 

the help of the C programming [6].  

 

TABLE 1: The Period-Doubling Cascade 

Period 

 

Bifurcation Point Value of  Corresponding 

Periodic point 

1 2.00000000  (x=0.81696581, 

y=0.544331054) 

2 2.66666667  (x=1.15470054,  

y= 0.76980036) 

4 2.80944626 4.66932113 (x=1.21495388,  

y= 0.809969254) 

8 2.84002528 4.66908… (x=1.22747381, 

y= 0.818315874) 

16 2.84657437 4.669201… (x=1.23013862, 

y= 0.820092414) 

32 2.84797698 4.66921… (x=1.2307086, 

y= 0.8204724) 

64 2.84827739 4.66898… (x=1.230983064, 

y=0.82055376) 

128 2.84834173 4.66910… (x=1.2308567,  

y=0.82057118) 

256 2.84835551 4.66908… (x=1.23086237, 

y=0.820574914) 

512 2.84835846 4.66912… (x=1.23027826, 

y=0.820185507) 

 

The following formula is used to compute the ratios of the bifurcation points' sequential separations: 

In our situation, we compute  as follows: 

𝛿1 =
𝛽2−𝛽1

𝛽3−𝛽2
= 4.66932113,𝛿2 =

𝛽3−𝛽2

𝛽4−𝛽3
=   4.6690803,𝛿3 =

𝛽4−𝛽3

𝛽5−𝛽4
=   4.66920137              

𝛿4 =
𝛽5−𝛽4

𝛽6−𝛽5
= 4.66921667,𝛿5 =

𝛽6−𝛽5

𝛽7−𝛽6
=   4.66898572 , 𝛿6 =

𝛽7−𝛽6

𝛽8−𝛽7
=   4.6691016  

𝛿7 =
𝛽8−𝛽7

𝛽9−𝛽8
=  4.66908563, 𝛿8 =

𝛽9−𝛽8

𝛽10−𝛽9
=  4.66911864 … ..  , 𝑒𝑡𝑐. 

and have a particular scaling associated with them. As k approaches infinity, the ratios tend to a constant; more 

specifically, 

lim
𝑘→∞

[
𝛽𝑘 − 𝛽𝑘−1

𝛽𝑘+1 − 𝛽𝑘

] =  𝛿 = 4.66911864 …            

The 'universal' Feigenbaum constant  = 4.66911864... is likewise found in this two-dimensional system. 
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3. Results and discussions 

 

3.1: Time Series Analysis:  

 

The term “time series” refers to a chronological list of observations made regarding a single variable. The 

observations are often made on a regular basis [3,10]. Two steps make up a time series analysis: (i) creating a 

model to represent the time series, and (ii) utilizing the model to anticipate (predict) future values. We have 

displayed the discrete time series below for the values of 𝑥𝑛 and 𝑦𝑛 to demonstrate the existence of periodic orbits 

and chaos, by using equation (1.1) as our model. 

 

 

 

Our time-series graphs thus indicate the occurrence of many periodic orbits that eventually result in chaos. 

3.2: Lyapunov Exponents:  

The exponential divergence of originally adjacent trajectories is the key characteristic of chaotic dynamical 

systems, which is also known as their sensitive dependency on the initial conditions [16,17]. Divergence and 

convergence are present in different directions and so we need a collection of Lyapunov exponents to completely 

characterize an attractor's divergence and convergence behaviors. For various initial separation vector 

orientations, the rate of separation can vary. Since there are as many Lyapunov exponents as there are dimensions 

in the phase space, there is a wide range of them. The Maximal Lyapunov exponent (MLE), which defines how 

predictable a dynamical system is, is the one that is frequently mentioned because it is the greatest. A positive 
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MLE is typically seen as evidence of chaos in the system. The effect of the other exponents will gradually be 

eliminated over time due to the exponential growth rate, therefore take into account that any initial separation 

vector will normally contain some component in the direction of the MLE. The range of Lyapunov exponents for 

a dynamical system relies on the beginning point[11,12,19]. The Jacobian matrix is used to define the Lyapunov 

exponents, which explain the behavior of vectors in the tangent space of the phase space. 

3.3: Lyapunov Exponents for Two-Dimensional Maps: 

Consider a discrete dynamical system in two dimensions: 

2
xxx =+   ),(1 nn f

 

Let us examine the dynamics of the difference between the two paths 𝑥𝑛̅̅ ̅ and𝑦𝑛̅̅ ̅ = 𝑥𝑛̅̅ ̅ + . Since we take into 

account tiny changes over the long run, the linearization of the map f, or its Jacobians, governs how these 

differences behave. 

n
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This produces a linear dynamical system for the perturbation  with time-dependent coefficients  

.)(1 nnn J δxδ =+  

The long term dynamics is governed by the eigenvalues 𝜂𝑖 of the product of the Jacobians  

(N)
i

(N)
i

(N)
in

N

n
J vηvx =

=
)(

1  

with v𝑖(𝑁) denoting the eigenvectors of the product of the N Jacobians. The Lyapunov exponent 𝜆𝑖 is then defined 

as the normalized logarithm of the modulus of the ith eigenvalue 𝜂𝑖 of the product of all Jacobians along trajectory 

(in time order) in the limit of an infinitely long trajectory:  

(N)
i

N
i

N
λ ηlog

1
lim

→
=

 

Often, the eigenvalues are listed from largest to smallest in order of magnitude. However, in thecase of one-

dimensional maps, the definition reduces to 

)(log
1

lim n
N

xf
N

λ =
→  

and the existence and uniqueness is established by the usual (Birkhoff) ergodic theorem. 

3.4: Lyapunov Exponents for Our Map∅𝜷. 

 

The eigenvalues in the limit of the following expression are used to calculate the Lyapunov exponent:

N
NGGGG ....... 210  

where N approaches infinity and 𝐺𝑘 is the Jacobian of   at the iterated point(𝑥𝑘 , 𝑦𝑘). In order to get close 

enough to the fixed points for the evaluation of Lyapunov exponents, we started with a point and repeated it, say, 

two thousand times. The eigenvalues of the resulting matrix M are then determined by finding 𝑀 =
(𝐺0, 𝐺1, 𝐺2, … , 𝐺𝑁), where N=5000 (say). Then  
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𝜆 = log [
𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑜𝑓 𝑀

𝑁
] is the Lyapunov exponent. 

The graph of Lyapunov exponents relative to parameter values from 1.5 to 2.85 is shown in figure 11. We have 

iterated from the starting point (1.44, 0.348) to evaluate the Lyapunov exponent with 5000 iterations. The curve 

of the Lyapunov exponent hits the horizontal line at the bifurcation points. The positive values indicate the 

irregular behavior of the system. We compose a computer program to calculate the Lyapunov exponents for the 

parameter values ranging from 1.5 to 2.96 for the graph of figure (12). It is interesting to note that at the 

accumulation point, the period-doubling regime terminates and the chaotic regime takes over. The existence of 

chaos in our model is supported by the positive Lyapunov values. 

TABLE 2: 

Control Parameter Lyaponov exponent Control Parameter Lyaponov exponent 

…   …   … …   …   … …   …   … …   …   … 

1.5 -0.000081 2.856327 0.003085 

1.6145 -0.000484 2.878513 0.000192 

1.78921 -0.000644 2.885142 0.007093 

…   …   … …   …   … …   …   … …   …   … 

2.4561 -0.001222 2.94361 0.006507 

2.61619 -0.000129 2.954476 0.003185 

2.82579 -0.020619 2.96500 0.011006 

 

 

 

Fig 11 Graph of Lyapunov exponent versus control parameter. 

Negative values indicate the existence of chaos. There are many practical reasons for controlling chaos. First of 

all, chaotic system response with little meaningful information content is unlikely to be useful. Secondly, chaos 

can lead systems to harmful situations, therefore chaos should be reduced as much as possible. Chaos is observed 

as undesirable part in engineering control practice. So, controlling of chaos is an essential part of study of chaos. 

The idea of “controlling chaos” was first suggested in a famous paper by Ott, Grebogi and Yorke in1995 and 

known as OGY method[12].After that many techniques for controlling chaos have been proposed in these decades. 

The proportional pulse method was introduced by Matias and Guemez[11]. After that N.P.Chau discussed in a 

similar manner but gave some restrictions on the initial conditions by which chaos can be controlled. We have 

taken the method of periodic proportional pulse and OGY method to control chaos. 

3.5: Controlling of Chaos in Two Dimensional Map∅𝜷: 

In this section, a two dimensional discrete map is considered. The map is  

𝑥𝑛+1 = 𝛼𝑥𝑛 + 𝑦𝑛 ;  𝑦𝑛+1 = 𝛽𝑥𝑛 + 𝛾𝑦𝑛 − 𝑥𝑛
3                                                          (4) 

where is a control parameter. We have seen that the accumulation point of the system is 2.8302283462700...from 

where chaotic region starts. We consider the parameter value 𝛽 = 𝛽0 = 2.83 (say) which is far behind the 
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accumulation point and shows a chaotic attractor [13,14,15]. Following time series plot beyond accumulation 

point (=2.83) shows chaotic behavior of the model. 

 

Fig 12: Time series plot showing irregular behavior at the control parameter  = 2.83.Abscissa represents the 

number of iterations, while the ordinate represents functional value at every iteration. 

 

3.6: Control procedure for two dimensional map ∅𝜷: 

Here we have considered the extended version of the above method (1).The procedure is as follows: Let us 

consider a two dimensional discrete system 

𝑥𝑛+1 = 𝑓(𝑥𝑛 , 𝑦𝑛) , 𝑦𝑛+1 = 𝑔(𝑥𝑛 , 𝑦𝑛).The model can be written as 

𝑋𝑛+1 = 𝐹(𝑋𝑛)(5) 

where X is a vector in R2 . To control the dynamics, kick is applied to the orbit of the composite map 𝐹𝑚 , once 

every p steps, by multiplying the x component of the dynamics by a factor 𝑘1 and the y component by a factor 𝑘2 

[4,5].Now the kicked map is defined a follows 

𝐻 = 𝐾𝐹𝑚,                                                                                                      (6) 

where K  is a diagonal matrix whose diagonal elements are 𝑘1 and 𝑘2 and 𝐹𝑚represents composition of  F, m 

times. Any fixed point of H let’s say X is stable if  

𝐻 = 𝐾𝐹𝑚(𝑋) = 𝑋,(7) 

and Jacobian matrix has two eigenvalues whose modulus <1 (unity).           (8) 

Now we have to determine the values of 𝑘1 and 𝑘2 such that chaos is controlled. 

Proposed map and control procedure 

The above extended version of the control procedure, is now applied in the two dimensional map ∅𝜷 with=2.8. 

From (4) it is clear that lies =2.83 in the chaotic region. The Jacobian matrix of (4) is (
0

2

3

𝛽 − 3𝑥2 + 1 0
) 

So Jacobian of H will be  (
𝑘1 0
0 𝑘2

) (
0

2

3

𝛽 − 3𝑥2 + 1 0
) = (

0 𝑘1
2

3

𝑘2(𝛽 − 3𝑥2 + 1) 0
) 

The characteristic polynomial of the Jacobian matrix is given as follows: 

𝜆2 − 𝜆𝑋 + 𝑌 = 0 , where X= Sum of the diagonal elements= 0  

and Y =− {𝑘1
2

3
} {𝑘2(𝛽 − 3𝑥2 + 1)} 

The eigenvalues of the Jacobian matrix for any point (x, y) are given by 

𝜆 =
𝑋±√𝑋2−4𝑌

2
  =>𝜆 = ±√{𝑘1

2

3
} {𝑘2(𝛽 − 3𝑥2 + 1). 

The fixed point will be stable if −1 < 𝜆 < 1. (9) 
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We put      𝑘1 =
𝑥

(1+𝛽)𝑦−𝛽𝑦3      and   𝑘2  =
𝑦

(1+𝛽)𝑥−𝛽𝑥3 .    (10) 

Now we pick those values of x, y which satisfy (13.1) and (13.2). For this purpose we make a suitable c-

programming and draw the basin of attraction of period 1 i.e. for m=1, as shown in figure 13. 

 
Fig 13.1a: Basin of attraction for period 1, where the points (x, y) satisfy equation (9) &(10). 

 

Now any one point from the shaded portion is picked say (x=0.250000,y=0.500000) and determined kicking factor 

𝑘1 = 0.235294, k2 = 0.831169  from(9) such that equation (8) is satisfied and eigenvalues 𝜆1 = 0.772424 and 

𝜆2 ==-0.772424 are obtained. Applying control procedure with above kicking factor we have obtained following 

figur13.1b.  

 
Fig13.1b: Chaos is controlled by taking initial value of (x, y) from the shaded portion of the fig13.1a. 

 

In figure13.1b upto 10000 iterations are done at the parameter =2.83 showing chaotic region and after that 

controlling parameters are switched on to get the periodic orbit of period one. Now for the other values of m, we 

have, 

𝑘1 =
𝑥

(1 + 𝑟)𝑦𝑚−1 − 𝑟𝑦𝑚−1
3

 

and𝑘2  =
𝑦

(1+𝑟)𝑥𝑚−1−𝑟𝑥𝑚−1
3 

where𝑥𝑚−1 is the first component of  𝑓𝑚−1 and 𝑦𝑚−1 is the second component of   𝑓𝑚−1. 

Also the Jacobian matrix is given as  (
𝑘1 0
0 𝑘2

) (

𝜕𝑥𝑚

𝜕𝑥

𝜕𝑥𝑚

𝜕𝑦

𝜕𝑦𝑚

𝜕𝑥

𝜕𝑦𝑚

𝜕𝑦

) 

Following the above discussed procedure we show controlling of chaos for different periodic orbit i.e. using 

different values of m. 
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Now for m=2: Basin of attraction is as shown in figure 13.2a. 

 
 

Fig13.2a: Basin of attraction for period -2. Abscissa is the x co-ordinate and ordinate is the y co-ordinate of (x, 

y).  

 

Now shaded portion of the above figure represents the point (x, y) which may be stable fixed point by taking 

suitable values 𝑘1and 𝑘2.Now picking any one value of co-ordinate of (x, y) =(x=0.390000, y=0.120000) from 

the shaded portion we have obtained 𝑘1 = 0.332845, k2 = 0.170440 and corresponding eigenvalues are 𝜆1 =
0.872433 and 𝜆2 = −0.624028 . 

 
Fi13.2b: Chaos is controlled by taking initial value of (x, y) from the shaded portion of the figure. 

 

This way, we can show how the chaos can be controlled for other parameter values and periodic points. 

Feigenbaum Universality, Bifurcations, Time SeriesAnalysis, Lyapunov Exponents. 

 

4. Conclusion:  

 

Establishment of a mathematical link of regular behavior in a nonlinear system with its chaotic behavior is indeed 

a challenging research in this field. There are many nonlinear systems in which this kind of phenomenon cannot 

be established. Here we have framed a model with an affirmative answer. Different suitable numerical techniques 

and computer software programs are developed so as to obtain bifurcation values, the accumulation point dividing 

the regular region and the chaotic region, and finally, the Feigenbaum universal constant. 

          To confirm our results, Time series analysis and Lyapunov exponents are strong complimentary. Different 

analysis on the controlling of chaos is effectively highlighted. Whether these techniques can be applicable to 

higher dimensional systems is an interesting open problem. Our discussion and results have formed a strong 

foundation for studying the dynamical properties of a nonlinear system with fruitful outcomes.  

 

Open Problems: (i) Can we apply our techniques for higher dimensional discrete systems? 

(ii) Can we study this model for super critical and subcritical Hopf Bifurcations? 
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