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Abstract: 1,4-DiAzaBiCyclo[2.2.2.]octane (DABCO) is a good neucleophile and base in number of organic 

reactions and gaining particular importance as catalyst in synthetic organic chemistry. Catalytic applications of 

DABCO in various reactions such as cycloaddition reaction, coupling reaction, Baylis-Hillman reaction, Henry 

reaction, ring opening reaction etc. are noteworthy in synthesis of novel organic scaffold. In this article it is tried 

to overview the recent development of DABCO catalysed reaction as well as its use in heterocyclic synthesis. 
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1. Introduction: 

 

1,4-DiAzaBiCyclo[2.2.2.]octane (DABCO) also known as triethylenediamine is a bicyclic compound with 

molecular formula N2C6H12 (Figure1). It is a tertiary amine having high nucleophilic character and act as Lewis 

base in variety of reactions leading to important organic scaffolds
1
. This chapter includes a brief overview of 

general reactions namely cycloaddition reaction, coupling reaction, Baylis-Hillman reaction, Henry reaction, 

ring opening reaction  as well as reactions involving the formation of novel heterocycles where DABCO is used 

as catalyst. 

 

 
Figure 1: 1,4-DiAzaBiCyclo[2.2.2.]octane 

 

From the single crystal X-ray diffraction studies the crystal structure of DABCO is studied [1] and it is observed 

that the perhydrate of DABCO is a helical chain of hydrogen peroxide molecules forming a 3-D network by 

interaction with the diamine whereas in monohydrate, water and diamine molecules are alternately linked. 

Similarly in the hexahydrate, cyclic water aggregates create cavities which are occupied by DABCO molecules. 

However the investigation of the crystal structure of DABCO salts of the 1,2-PPA and 1,4-PPA reveals the 

presence of  an interesting  hydrogen bond network (3D in 1,2-PPA and 2D in 1,4-PPA respectively) in the solid 

state.[2] 

 

Furthermore it can be mentioned that polyfunctionalized DABCO core can be prepared by multi-component 

reaction of acrolein, ortho-aminophenol and 2-benzoylacetanilide using ionic liquid as solvent (Scheme 1).[3]
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Scheme 1 

 

2. Applications OF DABCO: 

 

2.1. Cylcoaddition reactions: 

Over the last decade, cycloaddition reaction has received considerable attentions while growing emphasis on 

synthetic green methodologies, as it involves the formation of cyclic compounds with 100% atom economy and 

several efforts [4] are being made to utilize this reaction strategy for generation of hetero- and carbocycles. The 

base promoted cycloadddition reaction was much explored after the pioneering work of Schollkopf [5] and 

studies have been done afterwards on the cycloadditon reactions involving DABCO as one of the prominent 

Lewis bases. 

 

DABCO mediated domino [4+4] cycloadddition reaction leads to the formation of eight-membered cyclic ether 

derivatives [6] in good yields. The reaction is investigated with ynones and α-cyano-α,β-unsaturated ketones as 

substrates and under mild conditions resulted good to moderate yields (Scheme 2). This protocol provides a 

simple and atom-economic alternative for the formation cyclic ethers. 

 

 
Scheme 2 

 

Spirooxindole ring system is present in many natural products and compounds exhibit intriguing biological 

activities containing spirooxindole core system. To design an efficient synthetic method for spirooxindole 

scaffold is still a challenge for organic chemist. However, DABCO catalyzed [4+2] cycloadditon can be 

employed as an efficient route for the formation of spirooxindole ring using isatins and but-3-yn-2-one [7] 

(Scheme 3). Similar cycloaddition reaction with variation in the method by using methyleneoxindoles and 

allenoates as starting materials leads to the formation of  spirooxindole in good yields [8] (Scheme 4). 

 

 
Scheme 3 
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Scheme 4 

 

Dihydropyran-fused chromen-2-ones are readily obtained by [4+2] cycloaddition reaction of 3-acyl-2H-

chromen-ones and ethyl 2,3-butadienoate catalyzed by DABCO (Scheme 5). The regio-and stereo-selectivities 

of the products obtained can be controlled by the mode of reaction and variation in catalyst [9]. 

 

 
Scheme 5 

 

In a similar reaction, DABCO mediated [3+2] cycloadditon of cyclopropanes and aldehyde affords substituted 

furan derivatives
 
[10]. The reaction is studied in various solvents as well as basic conditions and substituted 

furan derivatives are obtained in excellent yields when the reaction is performed under solvent free condition 

(Scheme 6). 

 

 
Scheme 6 

 

DABCO catalysed cycloaddition reaction can be performed effectively for the synthesis of imidazoline 

derivatives. Sulfamate-fused 2-imidazoline is obtained in moderate to excellent yields[11] by [3+2] 

cycloaddition of sulfamate-derived cyclic imines and isocyanoacetates mediated by DABCO (Scheme 7).  

 

 
Scheme 7 
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DABCO catalyzes [4 + 2] cycloaddition of β,γ-unsaturated α-ketophosphonates or β,γ-unsaturated α-ketoesters 

with allenic esters efficiently yielding the corresponding tetrahydropyran and dihydropyran derivatives in good 

to excellent yields. [12] This reaction shows moderate to good regioselectivities under mild conditions (Scheme 

8). 

 

 
Scheme 8 

 

Again, [3+3] cycloaddition of 1,4-dithiane-2,5-diol with azomethine imines catalyzed by DABCO yields six-

membered dinitrogen-fused heterocycles in good yields (Scheme 9). [13] An excellent diastereoselectivity is 

observed in the reaction and it is assumed that the anomeric effect of the substrates controls this 

diastereoselectivity. 

 

 
Scheme 9 

 

2.2. Coupling reactions: 

 

Nowadays transition-metal-catalysed coupling reactions are earning much attraction as they provide interesting 

methodologies for the formation of C-C and C-heteroatom bonds. In continuation of the modifications for 

transition-metal-catalysed methodologies, cross coupling reactions are gaining particular interest [14]. 

Following this trend number of cross coupling reactions have been developed with improved catalytic system. 

In this regard investigations of catalytic activities of Lewis bases are carried on and variety of reactions were 

well studied involving DABCO as Lewis base.  

 

Pd(OAc)2/DABCO is an efficient catalytic system for the Suzzuki-Miyaura cross-coupling reaction
 
[15]. This 

catalytic system provides a smooth accomplishment of the reaction with the advantage that it can be recycled 

and reused without any lose of catalytic activity (Scheme 10). The catalytic system in Suzzuki-Miyaura reaction 

is further modified using DABCO as ligand and employing Cu
 
[16] instead of Pd (Scheme 11). However, 

CuI/DABCO system is also effective for Sonogashira cross-coupling reaction yielding moderate to excellent 

yield.    

 

 
Scheme 10 
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Scheme 11 

 

DABCO can be used as prominent catalyst without using Cu under solvent free condition for the Sonogashira 

cross-coupling reaction
  

[13] (Scheme 12). The yield of the reaction is up to 90% with different electron-

deficient aryl halides affording cross-coupling alkyne products. Recently, a DABCO catalysed silica-copper(I) 

nanocatalytic system is reported
 
[14] for pd-free Sonogashira cross-coupling reaction. This catalytic system is 

efficient and recyclable for the C–C bond formation of aryl halides with phenylacetylene through Sonogashira 

coupling.    

 

 

 

Scheme 12 

 

2.3. Baylis-Hillman reaction: 

 

The most important application of DABCO as catalyst is in the Baylis-Hillman reaction. This reaction is a 

variation of aldol condensation which is an important methodology for the formation hydroxy carbonyl 

compounds. The Baylis-Hillman reaction involves the conjugate addition of DABCO to acrylate followed by 

attack to aldehyde and the reaction is applicable for the synthesis of novel heterocycles. For example, Coumarin 

and chromene derivatives can be synthesised in good yields [15] applying Baylis-Hilman reaction using 2-

hydroxybenzaldehyde and methyl acrylate as substrates in presence of DABCO (Scheme 13).  

 

 
Scheme 13 

 

Nucleophilic trifluoromethylthiolation reaction can be also performed [16] using Baylis-Hillman reaction in the 

presence of DABCO. O-octadecyl-Strifluorothiolcarbonate is used as the nucleophilic tifluoromethylthiolation 

reagent in this reaction (Scheme 14). 

  

 
Scheme 14 

 

DABCO cataylsed Baylis-Hillman reaction can be employed for asymmetric synthesis with high 

enantioselectivity using chiral reagent. Reaction of 2-cyclohexen-1-one with different aromatic aldehydess using 

chiral thiourea organocatalyst [17] results the steriogenic hydroxyl ketone with ee up to 88% (Scheme 15).  

 

Scheme 12
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Scheme 15 

 

It can be mentioned that the addition of selenosulfonates to carbon–carbon unsaturated bonds has been known to 

proceed in the presence of Lewis acid BF3·OEt or through a radical reaction pattern. However, DABCO 

catalyzes the Baylis–Hillman reaction of selenosulfonates and methyl vinyl ketone giving the corresponding 

adduct in good yields at room temperature (Scheme 16). [18]
 

 

 
Scheme 16 

 

Among the carbon–carbon bond-forming reaction the Rauhut–Currier (RC) reaction, also known as vinylogous 

Morita–Baylis–Hillman (MBH) reaction is a remarkable reaction. The intermolecular RC reaction employing a-

cyano-a,ß-unsaturated ketones as activated alkenes for the synthesis of dihydropyrans, uses DABCO as catalyst 

(Scheme 17). [19]
 

 

 
Scheme 17 

 

2.4. Henry reaction: 

 

Henry reaction is a special nitroaldol reaction where nitrobenzaldehyde reacts with nitroalkanes. In this reaction 

metal-organic framework can be used as effective catalyst. In Zn-metal-organic framework containg DABCO 

involve one N atom instead of the two available N atoms to coordinate Zn. This Zn-MOF catalyzes the Henry 

reaction of 4-nitrobenzaldehyde and nitroalkanes in a molecular size selective manner
 
[20] with Small 

nitroalkanes give rise to higher conversion than larger ones (Scheme 18). 
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Scheme 18 

 

2.5. Ring opening reaction: 

 

As DABCO core contains two nitrogen atom with two lone pairs, it is strongly neucleophilic.  Employing this 

neucleophilicity, ring opening reaction of DABCO gives an interesting strategy for the synthesis 2-substituted 

ethylpiperazine group. [21] In this regard it can be mentioned that the reaction of 4-chloro-5H-1,2,3-dithiazoles 

with DABCO leads to the facile formation of piperazin-1-yl- dithiazol derivatives (Scheme 19). [22]
 

   

 
Scheme 19 

 

2.6. Isomerisation reaction: 

 

DABCO catalyzes isomerisation reaction of alkyne to alkene efficiently. Thus the isomerisation reaction of γ-

hydroxy-α,β-acetylenic esters to γ-oxo-α,β-trans-alkenyl esters is performed efficiently using DABCO as 

catalyst (Scheme 20). [23] The transformation is however regioselctive giving both E and Z isomer of the 

product. 

 

 
Scheme 20 

 

2.7. Stereoselective ester formation reactions: 

 

The stereoselective reaction involving the formation of esters; it may be α, β-unsaturated esters or cyclic ester 

catalysed by DABCO leads the products in good yields. Thus, (E)α-ethynyl- α, β-unsaturated esters are obtained 

from allenyl acetates  using DMF as solvent under catalytic condition of DABCO yielding stereoselectively E-

isomer (Scheme 21). [24] Again enyne bromolactonization of E and Z isomer of enynic acid catalyzed by  

DABCO gives  lactone having substituted allene with syn stereoselectivity (Scheme 22). [25]
 

 

 
Scheme 21 
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Scheme 22 

 

2.8. Synthesis of novel heterocycles: 

 

The majority of biologically active compounds are comprised of heterocycles. Among the heterocyclic 

compounds oxygen and nitrogen containing heterocycles such as Furan, pyran, Chromene, pyranochromene, 

pyrazole, quinolines, quinazolines are growing particular interest as these rings are found as main sub-unit in 

natural products such as alkaloids, flavonoids, tocopherols etc. Moreover, the compounds containg these rings 

are found to have diverse biological activities. [26, 27] Thus the prevalence of these heterocycles has motivated 

several research groups for extensive investigations and numbers of methodologies for DABCO catalysed 

comprehensive synthesis novel heterocycles have been extensively developed.  

 

When propargyl alcohol is treated with methyl 2-perfluoroalkynoate using DABCO as base and DCM as solvent 

[28], it affords trifluoromethylated furans in excellent yield (Scheme 23). The reaction proceeds through 

Michael addition followed by Claisen cyclization process. 

 

 
Scheme 23 

 

Again, reactions of α-halo carbonyl compounds with alkyes having electron withdrawing groups such as 

dimethylacetylenedicarboxylate in presence of K2CO3 and DABCO result substituted furans and pyrans [29]
 

(Scheme 24). 

 

 
Scheme 24 

 

DABCO mediated reaction of allenic esters and ketones with salicyl N-Tosylimines affords highly 

functionalized chromenes in good yields [30]. The reaction is carried out in room temperature (Scheme 25). 
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Scheme 25 

 

Again, Chromene is obtained in a reaction of salicyl N-tosylimine and methyl 3-trimethylsilylpropiolate under 

catalytic condition of DABCO (Scheme 26). [31] The reaction proceeds through a three component coupling 

fashion where salicyl N-tosylimine act as bifunctional substrate.  

 

 
Scheme 26 

 

Chromen-5-ones and Pyrano[3,2-c]chromen-5-ones can be synthesized by one-pot three-component coupling 

reaction [32] in presence of DABCO under solvent-free conditions (Scheme 27). Reaction of α-oxoketene-N,S-

arylaminoacetals, aromatic aldehydes, and dimedone results chromen-5-ones. However the use of 4-

hydroxycoumarin instead of dimedone in this reaction affords Pyrano[3,2-c]chromen-5-ones in high yields. 

 

 
Scheme 27 

 

DABCO catalyzes a three component [3+2+1]  annulation reaction of β-aroylthioacetanilides, aldehyde and 

aroyl acetonitriles.
 
[33] In this reaction 1,2,3,4tetrahydropyridine derivatives or thiochromeno[2,3-b]pyridine 

derivatives are obtained with high chemo-, stereo, and unusual regioselectivity (Scheme 28). 
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Scheme 28 

 

Again, DABCO mediated multi-component reaction of isocyanides, aldehydes and malononitrile leads to the 

formation of substituted cyclopentenes (Scheme 29). [34] Morever, DABCO catalyzed tandem annulations 

reaction of 2-(2-chloroaroyl)methyleneimidazolidines with allenic esters affords functionalized 

imidazo(pyrido)[1,2-a]pyridines in good yields through subsequent formation of dihydroimidazo[1,2-a]pyridin-

5(1H)-one (Scheme 30). [35] 

 

 
Scheme 29 

 

 
Scheme 30 

 

Nucleophilic addition of DABCO to isocyanide and stepwise cycliztion followed by subsequent substitution of 

the DABCO moiety with oxygenated nucleophiles results 2-alkoxy- and 2-aroxy-3-substituted quinolines 

(Scheme 31). [36] 

 

 
Scheme 31 
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Stereoselective formation of pyrano[3,2-c]chromenes are achieved by Michael/hydroalkylation reaction [37] of 

α-arylacetylenylß-arylnitroolefins with enolizable cyclic 1,3 dicarbonyls at room temperature using DABCO as 

a cheap organocatalyst and ethanol as solvent. The formation of pyrano[3,2-c]chromenes is excellent 

stereoselective yielding up to =96 : 4 Z/E ratio (Scheme 32).  

 

 
Scheme 32 

 

Facile synthesis of pyrazole can be achieved successfully if tosylhydrazones and nitroalkenes are used as 

substrates in presence of catalytic amount of DABCO [38]
 
(Scheme 33). 

 

 

 

 
Scheme 33 

 

Moreover, Quinazolines can be synthesized efficiently [39] by one-pot reaction of aldehydes and 2-

aminobenzylamines under catalytic condition of CuCl/DABCO (Scheme 34). 

 

 

 
Scheme 34 

 

2.9. Miscellaneous: 

 

Now a day’s co-ordination polymer gel is attracking particular interest in supramolecular chemistry as it has 

unusual functional properties such as emission [40], absorption [41], catalytic behaviour [42] etc. and it can be 

obtained by incorporation of metal in organic gelator. A novel three-component gel is reported recently [43] by 

gelation of Cu
2+

 and Fe
3+ 

coordination polymers containing succinic acid and DABCO. 

 

DABCO in combination with Pd(OAc)2 is an efficient catalytic system for the synthesis of single and double 

Methoxy-N-methyl amides (Weinreb amides). [44] Weinreb amides are important scaffolds in synthetic organic 

chemistry as it is a chief precursor for the construction of various functional carbonyl compounds.[45, 46] 

Aminocarbonylation of aryl iodides using DABCO as a stable ligand incorporation with Pd catalyst gives 

Weirneb amides in good yields (Scheme 35). 
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Scheme 35 

 

3. Conclusion: 

 

Over the past decades, Lewis base catalysed reactions have considered as powerful tools in rapid construction of 

organic scaffolds due to their convenience and efficiency. In this regard, 1,4-diazabicyclo[2.2.2.]octane enjoys a 

broad field as organocatalyst in synthetic organic chemistry since it is a readily available as well as recyclable 

catalytic system. In this article it is tried to summarize the scope of DABCO as Lewis base catalyst with some 

relevant important and significant reactions. Research on the usefulness of DABCO in the development of 

various methodologies is still in progress. It is hoped that more interesting and useful chemical reactions 

involving this particular system will be explored in near future.   
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