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Abstract: An investigation and quantification of certain performance characteristics of a flat type 3” x 3” 

thallium activated sodium iodide scintillation detector was carried out.  Certain performance characteristics like 

the operating voltage, the energy calibration, the photomultiplier tube (PMT) gain, the detector resolution and 

detector efficiency of the detector were determined and discussed. A quality assurance programme was carried 

out in laboratories of North Eastern Hill University, Shillong, India and Bhabha Atomic Research Centre 

(BARC), Mumbai, India to validate our analytical method for determination of radio-nuclides in environmental 

samples. The quality of the data generated by cross-checking method assures that the NaI(Tl) detector which is 

used for our study is efficient and trustworthy whereby data generated by it can be considered authentic and of 

acceptable quality.  
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1. Introduction: 

 

A spectrometer is an instrument that provides information about both the energy and intensity of the radiation 

emitted from a radioactive source. A gamma – ray spectrometer using the NaI(Tl) scintillation detector is 

employed for our study. The most prominent property of the NaI(Tl) is its excellent light yield. As the gamma 

particles emitted during the decay of specific radioactive elements have very well defined energies, the 

measurement of specific energy gammas indicates what radioactive nuclei are decaying. The characteristic 

features of the spectrum produced can be interpreted by an understanding of the underlying physics. The 

Compton continuum arises from events which result in a partial deposition of the incident photon energy in the 

detector (i.e. from Compton scattering) and the Compton edge corresponds to the maximum energy that can be 

transferred to a recoil electron in a single Compton scatter event. A backscatter peak is often seen in gamma-ray 

spectra and is caused by gamma rays from the source that has first interacted by Compton scattering in one of 

the materials surrounding the detector. A final feature is the presence of characteristic X-ray peaks. The incident 

photon may interact with the material via the photoelectric effect and subsequently be absorbed by the detector 

[1].  

 

The basic set up of a gamma-ray spectrometer besides the thallium doped sodium iodide detector consists of a 

photomultiplier tube (PMT) and PMT ‘base’, a pre-amplifier, an amplifier and a multi channel analyser (MCA). 

As the gain of the setup is a strong function of the inter-dynode potential (or the applied voltage), the resolution 

is expected to vary with the applied voltage. Thus, the determination of the optimum operating voltage has to be 

taken into consideration before any measurement is made [2].  

 

Prior to any measurements taken, it is therefore important to quantify certain performance characteristics of the 

detector chosen. The most essential requirement for the estimation of gamma emitting radio-nuclides in any 

sample is the exact identification of the spectrum produced by the detector system and the estimation of its 

activity. The energy calibration establishes an exact correspondence between the channel number and gamma 

energy while the efficiency calibration determines the activity of a radionuclide vis-a-vis the standard used in 

the efficiency calibration. 

In our study, the investigation of the performance characteristics of a 3” x 3” flat type NaI(Tl) scintillation 

detector used for our study is carried out experimentally with a good number of gamma sources. The 
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experimental details for determining a few factors related to the operating characteristics of the detector and a 

brief discussion are presented. 

 

2. Experimental procedure: 

 

2.1. Operating voltage: 

 

In setting up a nuclear counting measurement, it is often desirable to establish an operating point that will 

provide maximum stability over long periods of time. It is often possible to vary the gain or amplification 

provided for the charge produced in radiation interactions. This variation can be accomplished by varying the 

amplification factor of a linear amplifier between the detector and counting circuit or in many cases more 

directly by changing the applied voltage to the detector itself [1].  

 

To obtain an optimum operating voltage, the method described in the manual provided by the manufacturer of 

the gamma-ray spectrometer is followed [3]. Using a 
137

Cs gamma source, the gamma-ray spectrum is acquired. 

The experiment is repeated for varying operating voltage values and the corresponding plots of the count rate 

versus base line voltage (or LLD) are also done. The resolution is calculated in each case. Finally, a plot of the 

resolution as a function of the applied voltage is drawn from which the optimum operating is determined. To 

allow the PMT to stabilise, care has been taken by allowing an elapse time of thirty minutes for each increase in 

voltage. This warm-up period is allowed so as to minimize the variation in output voltage and ambient 

temperature due to voltage shifts in the PMT. 

 

2.2. Energy calibration: 

 

A desirable feature of a good spectroscopy system is that there should be a linear relationship between the 

magnitude of the output pulse and the photon energy deposited in the detector [1]. The electric pulses extracted 

from the PMT are amplified by the amplifier which are then fed to a multi channel analyser (MCA) and are then 

registered by the computer and sorted out in the form of a histogram according to their amplitude.  As the 

amplitude is proportional to the gamma energy, the histogram generated represents the energy distribution of the 

detected quanta.  

 

The incoming pulses are read by an analog-to-digital converter, which makes a classification i.e. sorts the pulses 

into different boxes (channels) according to their pulse height. The channels are numbered according to 

increasing pulse height and the channel number is thus proportional to the gamma energy. The energy 

calibration is also used to determine the resolution and location of ‘regions of interests’ (ROI). Energy 

calibration for our gamma-ray spectrometer was carried out using standard caesium (
137

Cs) and cobalt (
60

Co) 

gamma reference sources. 

 

2.3. PMT gain: 

 

The photomultiplier tube (PMT) accomplishes the task of converting the light output of a scintillation pulse into 

a corresponding electrical signal. It convert light signals that typically consist of no more than a few hundred 

photons into a usable current pulse without adding large amount of random noise to the signal. As it is known 

that the overall gain of a PMT is a sensitive function of the applied voltage, it is therefore very important that 

sources of high voltage be well regulated and free of ripples. Any changes in the tube gain results in the drift of 

the operating voltage and can, if sufficiently large, deteriorate the energy resolution of the scintillation detector 

[1]. 

 

Using a 
137

Cs source, the high voltage (HV) is adjusted until the 662 keV full energy peak is just visible on the 

lowest channel of the MCA. The channel number (C) along with its corresponding voltage (V) are recorded for 

increasing values of voltage until the full energy peak passes beyond the end of the MCA window. A graph of 

log10C against log10V is plotted to determine the dependence of the position of the peak channel with HV for the 

PMT. 

 

2.4. Detector resolution: 

 

The peak resulting from the photo-peak is the distinguishing characteristics of all spectra. The width of this peak 

is a measure of the energy resolution of the detector [2]. This width reflects the fact that a large amount of 
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fluctuation was recorded from pulse to pulse even though the same energy was deposited in the detector for each 

event. If the amount of these fluctuations can be made smaller, the width of the corresponding distribution will 

also become smaller and the peak will approach a sharp spike or a mathematical delta function [1]. 

 

The energy resolution of a scintillation spectrometer is a measure of the ability to distinguish the presence of 

two gamma-rays closely spaced in energy. Since the essential information is contained in the photo-peak, the 

practical measure of the resolution is the width of the photo-peak. The most important contributor to peak 

broadening is the intrinsic resolution of the detector itself. This places an absolute limit on the attainable 

resolution since it is a fundamental property of the detector [1].  

 

The full energy peak for any type of detector can be approximated as a Gaussian curve, where the main 

contributor to peak broadening is the statistical fluctuations in the number of charge carriers produced in the 

detector for a given deposited energy. These fluctuations could be characterised by Poisson statistics where the 

resolution R is related to the peak gamma-ray energy as [1]: 

R α E
-½

                                                                                  (1) 

The energy resolution R of the detector is investigated for each of the peaks collected from the radioactive 

sources of 
22

Na, 
40

K, 
60

Co, 
137

Cs, 
232

Th and 
238

U, and is calculated by using the following formula 

                                                                   
    

  
  x 100%                (2) 

where Ho is the peak centroid channel number. 

 

A graph of log10R as a function of log10E is plotted and is compared with equation (1). 

 

2.5. Detector efficiency: 

 

All radiation detectors will, in principle, give rise to an output pulse for each quantum of radiation that interacts 

within its active volume. Uncharged radiation such as gamma-rays or neutrons must first undergo a significant 

interaction in the detector before radiation is possible. As these radiations can travel large distances between 

interactions, detectors’ efficiency is thereby reduced. Hence, a precise figure for the detector efficiency is 

necessary in order to relate the number of pulses counted to the number of neutrons or photons incident on the 

detector [1].  

 

To calculate the efficiency values for specific energies of the detector employed, IAEA standard samples RGK-

1, RGU-1, RGTh-1 with known activity and gamma ray abundance were used. Each standard sample was 

counted for 50,000 seconds for five times to minimise the statistical error.  

 

2.6. Quality assurance of measurement: 

 

The validity of the analytical methods for determination of radio-nuclides in environmental samples (soil, water, 

sediments, food and vegetables) was done through quality assurance programmes. The quality control of the 

data can be carried out through analysis of standard reference samples, replicate analysis, cross-method checks 

and inter-comparison studies. The purpose of assurance programme for radio-nuclide measurement is to reduce 

errors and ensure that the results obtained are of acceptable quality. Thus, two concepts are involved in quality 

assurance programme: quality control aimed at controlling the errors in measurement and quality assessments to 

verify that the measurements are made within acceptable error limits. 

 

Standard reference samples provided by International Atomic Energy Agency (IAEA), Vienna were analysed 

for determination of the activity concentration of the primordial radio-nuclides. 

Inter-comparison studies for the estimation of the primordial radio-nuclides in a few soil samples was carried 

out in the Department of Physics (DOP), North Eastern Hill University (NEHU), Shillong and the 

Environmental Assessment Division (EAD), Bhabha Atomic Research Centre (BARC), Mumbai. Gamma 

spectrometry was used in the analytical technique for the estimation of radio-nuclides in both the laboratories. 

The quality of the data generated during the study was also assured by cross – method checking. In this method, 

the same soil sample was analysed using two different analytical techniques. The analysis of 
226

Ra and 
232

Th 

activity concentration in soil samples was carried out using gamma – ray spectrometry technique in our 

laboratory, Department of Physics (DOP), NEHU, Shillong and neutron – activation analysis (NAA) at EAD 

laboratory, BARC, Mumbai. 
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3. Results and discussions: 

 

3.1. Operating voltage: 

 

Figures 1(a) to 1(e) depict the plot of the count rate versus the base line voltage (or LLD) for different operating 

voltage values. The corresponding resolution value is also shown. A plot of the resolution as a function of the 

operating voltage values is also depicted in Figure 1(f). It can be seen from Figure 1(f) that the optimum (best) 

resolution is obtained at 625 V and hence this value is used as the best operating for the detector in our study. 

 

 
Figure 1(a): 

137
Cs photo-peak spectrum at 550V. 

 

 
Figure 1(b): 

137
Cs photo-peak spectrum at 600V. 
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Figure 1(c): 

137
Cs photo-peak spectrum at 625V. 

 

 
Figure 1(d): 

137
Cs photo-peak spectrum at 650V. 

 

 
Figure 1(e): 

137
Cs photo-peak spectrum at 700V. 

2.6 2.8 3.0 3.2 3.4 3.6

0

10000

20000

30000

40000

50000

60000

70000

Operating Voltage: 625 V

FWHM: 0.2 V

Max. Height: 3.1 

Resolution = 6.5%

C
o

u
n

ts

LLD (Volt)

2.4 2.6 2.8 3.0 3.2 3.4 3.6

0

10000

20000

30000

40000

50000

60000

Operating Voltage: 650 V

FWHM: 0.21 V

Max. Height: 3.0 

Resolution = 7.0%

C
ou

nt
s

LLD (Volt)

2.4 2.6 2.8 3.0 3.2 3.4 3.6

0

10000

20000

30000

40000

50000

60000

Operating Voltage: 700 V

FWHM: 0.22 V

Max. Height: 3.1

Resolution = 7.1%

C
ou

nt
s

LLD (Volt)



Journal of Applied and Fundamental Sciences    
   

   
 

 

   
JAFS|ISSN 2395-5554 (Print)|ISSN 2395-5562 (Online)|Vol 3(2)|November 2017                                          63 

 
Figure 1(f): Applied voltage versus resolution characteristics. 

 

3.2. Energy calibration: 

 

A plot of the typical spectrum obtained for energy calibration is shown in Figure 2(a). 

 

 
Figure 2(a): Typical spectrum obtained for energy calibration. 

 

Figure 2(b) depicts the plot of the channel number as a function of the gamma-ray peak energy. The energy 

calibration was carried out using the second order polynomial fit. The values of the parameters were found out 

to be: a = -1.14 x 10
-4

; b = 3.21 and c = 24.7. With ‘a’ being extremely small, the curve very nearly matches 

with a linear curve. This linear relationship between the peak channel number and incident gamma-ray energy 

shows that the quantity of energy which is deposited in the detector by the incident radiation is directly 

proportional to the output pulse.  
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Figure 2(b): Energy calibration curve obtained for the gamma-ray spectrometer. 

 

3.3. PMT gain: 

 

Figure 3 shows the plot of log10C against log10V for a 
137

Cs source. The 662 keV full energy peak became just 

visible on the MCA at 470 V. As can be seen from Figure 3, a linear relationship between the channel number 

and applied voltage is observed. This gain is due to electron multiplication in the PMT and is proportional to the 

high voltage V applied to the dynode by a factor of V
n
 where n varies between 6 and 10 depending on the 

dynode material [1]. The position of the photo-peak on a particular channel number depends on the PMT gain 

M, which in turn is proportional to V
n
 where V is the applied voltage 

i.e. M = kV
n                               

                                                        (3) 

 

 
Figure 3: Dependence of photomultiplier tube gain on high voltage. 
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Parameter      Value Error 

----------------------------------------------------------- 

A       -25.93 1.24 

B       10.09   0.45 

------------------------------------------------------------ 

R   SD      N     P 

------------------------------------------------------------ 

0.99         0.08      8           <0.0001 

------------------------------------------------------------ 

On using the logarithm of both the channel number of peak centroid and the high voltage, the gradient is the 

factor n. This gradient was found to be 10.1 ± 0.4 

 

3.4. Detector Resolution: 

 

A graph of log10R as a function of log10E is plotted and is compared with equation (1). Table 1 gives the 

calculated values of the resolution (in %) for the different energy values of the radioisotopes used. 

 

Table 1: Resolution values for different gamma energies. 

Energy (keV) Isotopes Resolution (%) 

511 
22

Na 9.9 

662 
137

Cs 8.5 

1170 
60

Co 6.4 

1280 
22

Na 6.1 

1330 
60

Co 5.9 

1460 
40

K 5.5 

1764 
226

Ra 5.3 

2614 
232

Th 3.9 

 

Figure 4 represents the resolution of the detector as a function of gamma-ray energy. Resolution values ranged 

between 9.9 % and 3.9% for gamma energies of 511 keV to 2614 keV, indicating that as the incident photon 

energy increases, the NaI(Tl) detector is able to distinguish the peaks of two radiations with energies that lie 

close to each other.  

 

 
Figure 4: Energy resolution of the NaI(Tl) detector. 
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    B           -0.56        0.03 

------------------------------------------------------------ 

     R         SD                 N      P 

------------------------------------------------------------ 

-0.99            0.015   8<0.0001 

------------------------------------------------------------ 

 

The gradient and intercept were found out to be -0.56 ± 0.03 and 2.51± 0.08 respectively with a correlation 

value of R = - 0.99. It can be concluded that the detector resolution is in good agreement with equation (1). 

There are a number of potential sources of fluctuations in the response of a given detector resulting in a poor 

energy resolution of the NaI(Tl) detector. These include any drift of the operating characteristics of the detector 

during the course of measurements, sources of random noises within the detector and instrumentation system, 

and statistical noise arising from the discrete nature of the measured signal itself. In a wide category of detector 

applications, the statistical noise represents the dominant source of fluctuations in the signal and thus sets an 

important limit on detector performance. This statistical noise arises from the fact that the charge generated 

within the detector by a quantum of radiation is not a continuous variable but instead represents a discrete 

number of charge carriers [1].  

 

3.5. Detector efficiency: 

 

The detector efficiencies calculated for the three radio-nuclides taken for our study were found out to be: 

i) 4.8% for 1460.8 keV 
40

K peak 

ii) 3.5 % for 1764.5 keV 
226

Ra peak 

iii) 1.3 % for 2614.5 keV 
232

Th peak 

 

A plot of the efficiency value as a function of the gamma-ray energy is shown in Figure 5. The figure depicts 

that the efficiency values decrease as a function of increasing gamma-ray energy. One of the factors for this 

decrease is because the higher energy photons spend less time in the vicinity of the detector material and are 

therefore able to pass straight through the material with less attenuation interaction of any kind. The counting 

efficiency is also strongly influenced by the sample geometry and tends to increase as the sample thickness 

increases. 

 

 
Figure 5: Photo-peak efficiency of NaI(Tl) detector. 
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Table 3: Activity concentration of 
40

K, 
226

Ra and 
232

Th in IAEA standard reference samples. 

Reference sample Radio-nuclide Certified value 

(Bq.kg
-1

) 

Observed value 

(Bq.kg
-1

) 

Accuracy (%) 

Soil 

IAEA – 375 

40
K 424.0 403.6 95.2 

226
Ra 24.4 22.1 90.6 

232
Th 20.5 18.8 91.7 

Soil 

IAEA – 326 

40
K 580.0 561.7 96.8 

226
Ra 29.4 27.3 92.9 

232
Th 39.4 35.9 91.1 

Sediment 

IAEA – 315 

40
K 297.0 281.5 94.8 

226
Ra 17.6 16.3 92.6 

232
Th 25.6 23.6 92.2 

 

The inter-comparison study are summarised in Table 4. It is evident from Table 4, that the variation in the 

measurements from both the laboratories is marginal. 

 

Table 4: Inter-comparison study for soil samples between laboratories of NEHU and BARC. 

 

Soil sample 

 

Laboratory 

Activity (Bq.kg
-1

) 
40

K 
226

Ra 
232

Th 

S-1 BARC 314 ± 12 36 ± 11 68 ± 6.2 

NEHU 332 ± 11 39 ± 10 60 ± 9 

S-2 BARC 601 ± 15 47.1 ± 6 102 ± 9 

NEHU 648 ± 15 43 ± 7 105 ± 7 

S-3 BARC 227 ± 10 41 ± 6 166 ± 8 

NEHU 246 ± 9 49 ± 8 181 ± 9 

S-4 BARC 342 ± 8.1 980 ± 24.1 399 ± 20.2 

NEHU 323 ± 14 900 ± 17 345 ± 14 

 

The results obtained by both the techniques are shown in Table 5. It is seen that the difference in measurements 

between the two techniques is within the tolerable limit. 

 

Table 5: Comparison of 
226

Ra and 
232

Th activities in soil samples using gamma-ray spectrometer and neutron-

activation analysis. 

 

Soil Sample 

226
Ra (Bq.kg

-1
) 

232
Th (Bq.kg

-1
) 

Gamma spectrometer NAA* technique Gamma spectrometer NAA* technique 

S-1 39 37.1 60 56.1 

S-2 43 46.3 105 101.9 

S-3 49 45.5 181 172.5 

S-4 900 905 345 347.2 

* NAA – Neutron Activation Analysis 

 

4. Conclusions: 

 

A series of experiments with a purpose of investigating certain performance characteristics of the NaI(Tl) 

scintillation detector used for our study were carried out. Hence, prior to any measurements taken, certain 

performance characteristics like the operating voltage, the energy  calibration, the photomultiplier tube (PMT) 

gain, the detector resolution and detector efficiency of the detector were determined and discussed. Further, the 

quality assurance programmes carried out in laboratories of the two mentioned departments validate our 

analytical method for determination of radio-nuclides in environmental samples. The quality of the data 

generated by cross-checking method assures that the NaI(Tl) detector which is used for our study is efficient and 

trustworthy whereby data generated by it can be considered authentic and of acceptable quality.  

 

However, it is to be noted that owing to the poor resolution of the scintillation crystal, the analysis of any 

complex spectra is inadequate as the detector will not be able to distinguish between radiations with energies 
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close to each other. For a system with better resolution, knowledge about how the peak efficiency varies with 

gamma-ray energy can be utilised for the study of sources with unknown content and activity.  
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