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Abstract: The objective of this paper is to construct an extension of the class of Jones distribution Banach spaces
SDp[Rn], 1 ≤ p ≤ ∞, which appeared in the book by Gill and Zachary [3] to SDp[R∞] for 1 ≤ p ≤ ∞. These
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1 Introduction and Preliminaries
The theory of distributions is based on the action of linear functionals on a space of test functions. In the original
approach of Schwartz [11] both test functions and linear functional have a natural topological vector space struc-
ture which are not normable. Sobolev gave powerful reply for this using functions that were Lebesgue type. At
the same time Lebesgue integrable functions have some limitations. In Physics particularly in quantum theory Ba-
nach space structure needed with non-absolute integrable functions. Gill and Zachary gave more strong reply than
Sobolev (see [10, 3]) by introducing the family of strong Jones function spaces SDp[Rn] for 1 ≤ p ≤ ∞, which
contain the non-absolute integrable functions. Henstock-Kurzweil integral was first developed by R. Henstock and
J. Kurzweil from Riemann integral with the concept of tagged partitions and gauge functions. Henstock-Kurzweil
integral (HK-integral) is a kind of non-absolute integral and contain Lebesgue integral (we refer [7, 8, 15]). The
most important of the finitely additive measure is the one that generated by HK-integral, which generalize the
Lebesgue, Bochner and Pettis integrals, for instance see [1, 5, 7, 13]. As a major drawback of HK-integrable
functions space is that it is not naturally a Banach space.

Y. Yamasaki [14] developed a theory of Lebesgue measure on R∞. In [4], Gill and Myres introduced a theory
of Lebesgue measure on R∞ : the construction of which almost same as the Lebesgue measure on Rn. Throughout
our paper, we suppose the notation R∞I and assume that I is understood. In this paper, we will focus on the main
class of Banach spaces SDp[R∞], 1 ≤ p ≤ ∞.

Definition 1.1 [13] A function f : [a, b] → R is HK-integrable if there exists a function F : [a, b] → R and for
every ε > 0 there is a function δ(t) > 0 such that for any δ-fine partition D = {[u, v], t} of I0 = [a, b], we have

||
∑

[f(t)(v − u)− F (u, v)]|| < ε,

where the sum
∑

is run over D = {([u, v], t)} and F (u, v) = F (v)− F (u). We write HK
∫
I0
f = F (I0).

Definition 1.2 [3, Definition 2.5] Let An = A× In and Bn = B × In (nth order box sets in R∞). We define

(a) An ∪Bn = (A ∪B)× In;

(b) An ∩Bn = (A ∩B)× In;

(c) Bcn = Bc × In.
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Definition 1.3 [4, Definition 1.11] We define RnI = Rn × In. If T is a linear transformation on Rn and An =
A × In, then TI on RnI is defined by TI [An] = T [A]. We also define B[RnI ] to be the Borel σ-algebra for RnI ,
where the topology on RnI is defined via the class of open sets Dn = {U × In : U is open in Rn}. For any
A ∈ B[Rn], we define λ∞(An) on RnI by product measure λ∞(An) = λn(A)×Π∞i=n+1λI(I) = λn(A).

Theorem 1.4 [3, Theoem 2.7] λ∞(.) is a measure on B[RnI ] is equivalent to n-dimensional Lebesgue measure
on Rn.

Corollary 1.5 [3, Corollary 2.8] The measure λ∞(.) is both translationally and rotationally invariant on (RnI , B[RnI ])
for each n ∈ N.

Recalling the theory on RnI that completely paralleis that on Rn. Since RnI ⊂ Rn+1
I , we have an increasing

sequence, so we define R̂∞I = lim
n→∞

RnI =
∞⋃
k=1

RkI . Let X1 = R̂∞I and let τ1 be the topology induced by the class

of open sets D ⊂ X1 such that D =
∞⋃
n=1

Dn =
∞⋃
n=1
{U × In : U is open in Rn}. Let X2 = R∞ \ R̂∞I , and let

τ2 be discrete topology on X2 induced by the discrete metric so that, for x, y ∈ X2, x 6= y, d2(x, y) = 1 and for
x = y, d2(x, y) = 0.

Definition 1.6 [3, Definition 2.9] We define (R∞I , τ) be the co-product (X1, τ1) ⊗ (X2, τ2) of (X1, τ1) and
(X2, τ2), so that every open set in (R∞I , τ) is the disjoint union of two open sets G1 ∪G2 with G1 in (X1, τ1) and
G2 in (X2, τ2).

It follows that R∞I = R∞ as sets. However, since every point in X2 is open and closed in R∞I and no point is
open and closed in R∞, So, R∞I 6= R∞ as a topological spaces. In [4], Gill and Myres shown that it can extend
the measure λ∞(.) to R∞.

Similarly, if B[RnI ] is the Borel σ-algebra for RnI , then B[RnI ] ⊂ B[Rn+1
I ] by

B̂[R∞I ] = lim
n→∞

B[RnI ] =

∞⋃
k=1

B[RkI ].

Let B[R∞I ] be the smallest σ-algebra containing B̂[R∞I ] ∪ P (R∞ \
∞⋃
k=1

[RkI ]), where P (.) is the power set. It is

obvious that the class B[R∞I ] coincides with the Borel σ-algebra generated by the τ -topology on R∞I .

Lemma 1.7 [4, Lemma 1.15] B̂[R∞I ] ⊂ B[R∞I ]

1.1 Measurable function
We discuss about measurable function on R∞I . Let x = (x1, x2, . . . ) ∈ R∞I , In = Π∞k=n+1[−12 ,

1
2 ] and let

hn(x̂) = χIn(x̂), where x̂ = (xi)
∞
i=n+1.

Definition 1.8 [3, Definition 2.46] Let Mn represented the class of measurable functions on Rn. If x ∈ R∞I and
fn ∈Mn. Let x = (xi)

n
i=1 and define an essentially tame measurable function of order n (or en-tame) on R∞I by

f(x) = fn(x)⊗ hn(x̂).

We let Mn
I = {f(x) : f(x) = fn(x)⊗ hn(x̂), x ∈ R∞I } be the class of all en-tame functions.

Definition 1.9 [3, Definition 2.47] A function f : R∞I → R is said to be measurable and we write f ∈ MI , if
there is a sequence {fn ∈Mn

I } of en-tame functions, such that

lim
n→∞

fn(x)→ f(x) λ∞ − (a.e.).

The existence of functions satisfying above definition is not obvious. So, we have

Theorem 1.10 [3, Theorem 2.48] (Existence) Suppose that f : R∞I → (−∞,∞) and f−1(A) ∈ B[R∞I ] for all
A ∈ B[R] then there exists a family of functions {fn}, fn ∈Mn

I such that fn(x)→ f(x), λ∞(−a.e.)

Remark 1.11 Recalling that any set A, of non zero measure is concentrated in X1 that is λ∞(A) = λ∞(A∩X1)
also follows that the essential support of the limit function f(x) in Definition 1.9, i.e. {x : f(x) 6= 0} is
concentrated in RNI , for some N.
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1.2 Integration theory on R∞
I

We discuss a constructive theory of integration on R∞I using the known properties of integration on RnI . This
approach has the advantages that all the theorems for Lebesgue measure apply. Proofs are similar as for the
proof on Rn. Let L1[RnI ] be the class of integrable functions on RnI . Since L1[RnI ] ⊂ L1[Rn+1

I ], we define

L1[R̂∞I ] =
∞⋃
n=1

L1[RnI ].

Definition 1.12 [4, Definition 3.13] We say that a measurable function f ∈ L1[R∞I ], if there is a Cauchy-
sequence {fn} ⊂ L1[R̂∞I ] with fn ∈ L1[RnI ] and

lim
n→∞

fn(x) = f(x), λ∞ − (a.e.)

Theorem 1.13 L1[R∞I ] = L1[R̂∞I ].

Proof: We know that L1[RnI ] ⊂ L1[R̂∞I ] for all n.We sufficiently need to prove L1[R̂∞I ] is closed. Let f be a limit
point of L1[R̂∞I ] (f ∈ L1[R∞I ]). If f = 0 then the result is obvious. So we consider f 6= 0. If Af is the support
of f, then λ∞(Af ) = λ∞(Af ∩ X1). Thus Af ∪ X1 ⊂ RNI for some N. This means that there is a function
g ∈ L1[RN+1

I ] with λ∞({x : f(x) 6= g(x)}) = 0. So, f(x) = g(x)-a.e. As L1[RnI ] is a set of equivalence
classes. So, L1[R∞I ] = L1[R̂∞I ].

Definition 1.14 [4, Definition 3.14] If f ∈ L1[R∞I ], we define the integral of f by∫
R∞I

f(x)dλ∞(x) = lim
n→∞

∫
R∞I

fn(x)dλ∞(x),

where {fn} ⊂ L1[R∞I ] is any Cauchy-sequence converging to f(x)-a.e.

Theorem 1.15 [4, Theorem 3.15] If f ∈ L1[R∞I ] then the above integral exists and all theorems that are true for
f ∈ L1[RnI ], also hold for f ∈ L1[R∞I ].

We denote N∞0 be the set of all multi-index infinite tuples α = (α1, α2, . . . ), with αi ∈ N and all but a finite
number of entries are zero (also see [3]).

Definition 1.16 The Schwartz space S[R∞I ] is the topological space of functions f : R∞I → C such that f ∈
C∞[R∞I ] and xα∂βf(x)→ 0 as |x| → ∞ for every pair of multi-indices α, β ∈ N∞0 , and f ∈ S[R∞I ], let

||f ||α,β = sup
R∞I
|xα∂βf |.

If x = (x1, x2, . . . ) ∈ R∞I and α ∈ N∞0 , α = (α1, α2, . . . ), we define xα = Π∞k=1x
αk
k a product of real or

complex numbers.
A sequence of functions {fk : k ∈ N} converges to a function f in S[R∞I ] if

||fn − f ||α,β → 0

as k →∞ for every α, β ∈ N∞0 .
That is the Schwartz space consists of smooth functions whose derivatives decay at infinity faster than any power.
For details on Schwartz space and distribution functions we refer [2, 3, 6, 9, 12].

Theorem 1.17 S[R∞I ] (respectively S ′ [R∞I ]) is a Fréchet space, which is dense in C0[R∞I ].

Proof: The proof is similar to (p 90 Theorem 2.88 of [3]).

Definition 1.18 A tempered distribution T on R∞I is a continuous linear functional T : S[R∞I ] → C. The
topological vector space of tempered distributions is denoted by S ′ [R∞I ] or S ′ . If < T, f > denotes the value
of T ∈ S ′ acting on f ∈ S, then a sequence {Tk} converges to T in S ′ . Written Tk → T if lim

k→∞
< Tk, f >=<

T, f > for every f ∈ S.

Purpose of the paper: The purpose of this paper is to introduce a class of Banach spaces on R∞I which contain
the non-absolutely integrable functions, but also contain the Schwartz test function spaces as dense and continuous
embedding.
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2 The Jones family of spaces SDp[R∞I ] 1 ≤ p ≤ ∞
The theory of distributions is based on the action of linear functional on a space of test function. In [3], Gill and
Zachary introduced another class of Banach spaces which contain the non-absolutely integrable functions, but also
contains the Schwartz test function space as a dense and continuous embedding.

Lemma 2.1 (Kuelbs lemma) If B is a separable Banach space, there exists a separable Hilbert space B ⊂ H as
continuous dense embedding

Proof: Let {ek} be a countable dense sequence on the unit ball B and let {e∗k} be any fixed set of corresponding
duality mappings (i.e for each k, e∗k ∈ B∗ and e∗k(ek) =< ek, e

∗
k >= ||ek||2B = ||e∗k||2B∗ = 1.) For each k, let

tk = 1
2k

and define (u, v) as follows:

(u, v) =

∞∑
k=1

tke
∗
k(u)e−∗k (v) =

∞∑
k=1

1

2k
e∗k(u)e−∗k (v)

It is clear that (u, v) is an inner product on B. Let H be the completion of B with respect to this inner product. It
is clear that B is dense in H, and

||u||2H =

∞∑
k=1

tk|e∗k(u)|2

≤ sup |e∗k(u)|2

= ||u||2B

So, the embedding is continuous. Now note that if B = L1[Rn],

|e∗k(u)|2 = |
∫
Rn
e∗k(x)u(x)dλn(x)|2

where e∗k(x) ∈ L∞[Rn].
It is clear that the Hilbert space H, will contain some non-absolutely integrable functions, but we cannot say which
ones will or will not be in there. This gave Steadman the needed hint for her Hilbert space. To construct the space
we remembering the remarkable Jone’s functions of 3.3.2 of [3] in C∞c [RnI ].
Fix n and let QnI be the set {x ∈ RnI } such that the first co-ordinates (x1, x2, .., xn) are rational. Since this is a
countable dense set in RnI , we can arrange it as QnI = {x1, x2, ...} for each k and i, let Bk(xi) be the closed cube
centered at xi with edge ek = 1

2k−1
√
n
, x ∈ N. Now choose the natural order which maps N×N bijectively to N,

and let {Bk : k ∈ N} be the resulting set of (all) closed cubes

{Bk(xi)| (k, i) ∈ N× N}

and each xi ∈ QnI . For each x ∈ Bk, x = (x1, x2, .., xn) we define Ek(x) by Ek(x) = (E ik(x1), E ik(x2), .., E ik(xn)
with |Ek(x)| < 1, x ∈ Πn

j=1I
i
k and Ek(x) = 0, x not belongs in Πn

j=1I
i
k. Then Ek(x) is in Lp[RnI ]n = Lp[RnI ]

for 1 ≤ p ≤ ∞. Define Fk(.) on Lp[RnI ] by

Fk(f) =

∫
RnI
Ek(x)f(x)dλ∞(x)

Since each Bk is a cube with sides parallel to the co-ordinate axes, Fk(.) is well defined integrable functions, is a
bounded linear functional on Lp[RnI ] for each k, with ||Fk||∞ ≤ 1 and if Fk(f) = 0 for all k, f = 0 so that {Fk}
is a fundamental on Lp[RnI ] for 1 ≤ p ≤ ∞. Let tk > 0 such that tk = 1

2k
so that

∑∞
k=1 tk = 1 and defined an

inner product (.) on L1[RnI ] by

(f, g) =

∞∑
k=1

[

∫
RnI
Ek(x)f(x)dλ∞(x)][

∫
RnI
Ek(y)g(y)dλ∞(y)]c

The completion of L1[RnI ] with the above inner product is a Hilbert space which we denote SD2[RnI ].
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Remark 2.2 SD2[RnI ] will contain some class of non absolute integrable functions. Interested researcher can
think for this. If we observe [3] , we must sure HK-integrable function space contained in SD2[RnI ] . we are not
interested to find that portion in this paper.

Theorem 2.3 For each p, 1 ≤ p ≤ ∞ we have

1. The space Lp[RnI ] ⊂ SD2[RnI ] as a continuous, dense and compact embedding.

2. The space M[RnI ] ⊂ SD2[RnI ], the space of finitely additive measures on RnI , as a continuous dense and
compact embedding.

Proof: For (1) by construction, SD2[RnI ] contains L1[RnI ] densely. So, we need to show that Lq[RnI ] ⊂ SD2[RnI ]
for q 6= 1. If f ∈ Lq[RnI ] and q <∞, we have,

||f ||SD2 ≤ C||f ||q

Hence, f ∈ SD2[RnI ]. For q =∞, first note that

vol(Bk)2 ≤ [
1√
n

]2n ≤ 1

So, we have
||f ||SD2 ≤ ||f ||∞

Thus f ∈ SD2[RnI ] and L∞[RnI ] ⊂ SD2[RnI ].
To prove compactness, suppose {fj} is any weakly convergent sequence in Lp[RnI ], 1 ≤ p ≤ ∞ with limit f.
Since Ek ∈ Lq, 1

p + 1
q = 1, ∫

RnI
Ek(x)[fj(x)− f(x)]dλ∞(x)→ 0

for each k. It follows that {fj} converges strongly to f in SD2[RnI ].
To prove (2) as M[RnI ] = L[RnI ]∗∗ ⊂ SD2[RnI ].

Definition 2.4 We call SD2[RnI ] the Jones strong distribution Hilbert space on RnI .

Let β be a multi-index of non negative integers

β = (β1, β2, .., βk)

with |β| =
∑k
j=1 βj . If D denotes the standard partial differential operator. Let Dβ = Dβ

1D
β
2 ...D

β
k .

Theorem 2.5 Let D[RnI ] be C∞c [RnI ] equipped with the standard locally convex topology( test functions)

1. If Φj → Φ in D[RnI ], then Φj → Φ in the norm topology of SD2[RnI ], so that D[RnI ] ⊂ SD2[RnI ] as
continuous dense embedding.

2. If T ∈ D′ [RnI ] then T ∈ SD2[RnI ]
′

so that D
′
[RnI ] ⊂ SD2[RnI ]

′
as a continuous dense embedding.

3. For any f, g ∈ SD2[RnI ] and multi-index β, (Dβf, g)SD = (−i)β(f, g)SD.

Proof: To prove (1), suppose that Φj → Φ in D[RnI ]. By definition there exists a compact set K ⊂ RnI which is
the support of Φj − Φ and DβΦj converges to DβΦ uniformly on K for every multi-index β. Let {EKl} be the
set of all El, with support Kl ⊂ K. If β is a multi-index we have

lim
j→∞

||DβΦj −DβΦ||SD = lim
j→∞
{
∞∑
l=1

tKl |EKl(x)[DβΦj(x)−DβΦ(x)]dλ∞(x)|2} 1
2

≤M lim
j→∞

sup
n∈K
|DβΦj(x)−DβΦ(x)| = 0

Thus , since β is arbitrary, we see that , we see that D[RnI ] ⊂ SD2[RnI ] as continuous embedding. Since C∞c [RnI ]
is dense in L1[RnI ], D[RnI ] is dense in SD2[RnI ].
To prove (2), we note that asD[RnI ] is a dense locally convex subspace of SD2[RnI ], by corollary of Hahn-Banach
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theorem every continuous linear functional,T defined onD[RnI ], can be extended to a continuous linear functional
on SD2[RnI ]. By Riesz representation theorem, every continuous linear functional T defined on SD2[RnI ] is of
the form T (f) = (f, g)SD for some g ∈ SD2[RnI ]. Thus T ∈ SD2[RnI ]

′
and by the identification T ↔ g for each

T in D
′
[RnI ] as continuous dense embedding.

For (3) as each Ek ∈ C∞c [RnI ] so that for any f ∈ SD2[RnI ],∫
RnI
Ek(x).Dβf(x)dλ∞(x) = (−1)|β|

∫
RnI
DβEk(x).f(x)dλ∞(x)

That is
(−1)|β|

∫
RnI
DβEk(x).f(x)dλ∞(x) = (−i)|β|

∫
RnI
Ek(x).f(x)dλ∞(x)

Follows, for any g ∈ SD2[RnI ], (Dβf, g)SD2 = (−i)|β|(f, g)SD2 .

2.1 The General case,
SDp[RnI ], 1 ≤ p ≤ ∞. To construct SDp[RnI ] for all p and for f ∈ Lp[RnI ], define:

||f ||SDp[RnI ] =


(∑

|β|≤m

∞∑
k=1

tk

∣∣∣∫RnI Ek(x)Dβu(x)dλ∞(x)
∣∣∣p) 1

p

, for 1 ≤ p <∞;∑
|β|≤m sup

k≥1

∣∣∣∫R∞I Ek(x)Dβu(x)dλ∞(x)
∣∣∣ , for p =∞

It is easy to see that ||.||′SDp defines a norm on Lp[RnI ]. If SDp[RnI ] is the completion of Lp[RnI ] with respect to
this norm, then we have

Theorem 2.6 For each q, 1 ≤ q ≤ ∞ Lq[RnI ] ⊂ SDp[RnI ] as a dense continous embeddings.

Proof: As SDp[RnI ] contains Lp[RnI ] densely, so we have to only show that Lq[RnI ] ⊂ SDp[RnI ] for q 6= p.
First, suppose that p <∞. If f ∈ Lq[RnI ] and q <∞, we have:

||f ||SDp ≤ ||f ||q

Hence f ∈ SDp[RnI ] for q =∞, we have

||f ||SDp = [

∞∑
k=1

tk|
∫
RnI
Ek(x)f(x)dλ∞(x)|p]

1
p

≤ [[

∞∑
k=1

tk[vol(Ek)]p][ess sup |f |]p]
1
p

≤M ||f ||∞

Thus f ∈ SDp[RnI ] and Lq[RnI ] ⊂ SDp[RnI ]. The case p =∞ is obvious.

Theorem 2.7 For SDp[RnI ], 1 ≤ p ≤ ∞, we have

1. SDp[RnI ] is uniformly convex.

2. If 1
p + 1

q = 1 then the dual space of SDp[RnI ] is SDq[RnI ].

3. If K is a weakly compact subset of Lp[RnI ], it is a strongly compact subset of SDp[RnI ].

4. The space SD∞[RnI ] ⊂ SDp[RnI ].

Proof: For (1) proof follows from a modification of the proof of the Clarkson inequality for lp norms.
For (2) Let lpk(g) = ||g||2−pSDp |

∫
RnI
Ek(x)g(x)dλ∞(x)|p−2 and observe that for p 6= 2, 1 < p < ∞ the linear

functional

Lg(f) =

∞∑
k=1

tkl
p
k(g)

∫
RnI
Ek(x)g(x)dλ∞(x)

∫
RnI
Ek(y)f∗(y)dλ∞(y)
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is a duality map on SDq for each g ∈ SDp and that SDp is reflexive from (1).
For (3) If {fm} is any weakly convergent sequence in K with limit f, then∫

RnI
Ek(x)[fm(x)− f(x)]dλ∞(x)→ 0

for each k. It follows that {fm} converges strongly to f in SDp.
For (4) Let f ∈ SD∞ implies |

∫
RnI
Ek(x)f(x)dλ∞(x)| is uniformly bounded for all k. It follows that |

∫
RnI
Ek(x)f(x)dλ∞(x)|p

is uniformly bounded for each p, 1 ≤ p <∞. It is now clear from the definition of SD∞ that :

[

∞∑
k=1

tk|
∫
RnI
Ek(x)f(x)dλ∞(x)|p]

1
p ≤ ||f ||SD∞ <∞.

Theorem 2.8 For each p, 1 ≤ p ≤ ∞, the test function D ⊂ SDp[RnI ] as continuous embedding.

Proof: Since SD∞[R∞I ] is continuously embedded in SDp[RnI ] 1 ≤ q < ∞, it suffices to prove the result for
SD∞[RnI ]
Suppose Φj → Φ inD[RnI ] so that there exists a compact setK ⊂ RnI , containing the support of Φj−Φ andDβΦj
converges to DβΦ uniformly on K for every multi-index β. Let L = {l ∈ N :the support El, stp{El} ⊂ K}, then

lim
j→∞

||DβΦ−DβΦj ||SD = lim
j→∞

sup
l∈L
|
∫
RnI

[DβΦ(x)−DβΦj(x)]El(x)dλ∞(x)|

≤ vol(Bl) lim
j→∞

sup
x∈K
|DβΦ(x)−DβΦj(x)|

≤ lim
j→∞

sup
x∈K
|DβΦ(x)−DβΦj(x)| = 0

It follows that D[RnI ] ⊂ SDp[RnI ] as a continuous embedding for 1 ≤ p ≤ ∞. Thus by the Hahn-Banach theorem
we see that the Schwartz distributions D

′
[RnI ] ⊂ (SDp[RnI )

′
for 1 ≤ p ≤ ∞.

3 The family SDp[R∞I ]
We define the space SDp[R∞I ] with the help of the space SDp[RnI ], using the same approach that led to L1[R∞I ].

We see that SDp[RnI ] ⊂ SDp[Rn+1
I ]. Thus we can define SDp[R̂∞I ] =

∞⋃
n=1

SDp[RnI ].

Definition 3.1 We say that a measurable function f ∈ SDp[R∞I ] if there is a Cauchy sequence {fn} ⊂ SDp[R̂∞I ]
with fn ∈ SDp[RnI ] and lim

n→∞
fn(x) = f(x), λ∞−(a.e.)

Theorem 1.5 shows that functions in SDp[R̂∞I ] differ from functions in its closure SDp[R∞I ], by sets of measure
zero.

Theorem 3.2 SDp[R̂∞I ] = SDp[R∞I ].

Definition 3.3 If f ∈ SDp[R∞I ], we define the integral of f by∫
R∞I

f(x)dλ∞(x) = lim
n→∞

∫
RnI

fn(x)dλ∞(x),

where fn ∈ SDp[RnI ] for all n and the family {fn} is a Cauchy sequence.

Theorem 3.4 If f ∈ SDp[R∞I ], then the integral of f defined in Definition 3.3 exists and all theorems that are
true for f ∈ SDp[RnI ] also hold for f ∈ SDp[R∞I ].
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Proof: For existance: Since the family of functions {fn} is Cauchy, it is follows that if the integral exists, it
is unique. To prove existence, follow the standard argument and first assume that f(x) ≥ 0. In this case, the
sequence can always be chosen to be increasing, so that the integral exists. The general case now follows by the
standard decomposition.

To construct the space SDp[R∞I ], for 1 ≤ p ≤ ∞
Choosing a countable dense set of functions {En(x)}∞n=1 on the unit ball of L1[R∞I ] and assume {E∗n}∞n=1 be
any corresponding set of duality mapping in L∞[R∞I ], also if B is L1[R∞I ] , using Kuelbs lemma, it is clear
that the Hilbert space H will contain some non absolute integrable function, we are not sure this non absolute
integrable function is HK-integrable or not. Similar argument of Lemma 2.1 in L1[R∞I ], with assumption Ek(x)
by Ek(x) = (E ik(x1), E ik(x2), .., E ik(xn) with |Ek(x)| < 1, x ∈ Πn

j=1I
i
k and Ek(x) = 0, x not belongs in Πn

j=1I
i
k.

Then Ek(x) is in Lp[R∞I ]n = Lp[R∞I ] for 1 ≤ p ≤ ∞. Define Fk(.) on Lp[R∞I ] and Let tk = 1
2k

so that
∑∞
k=1 tk

is a set of positive numbers that sum to one, define inner product on L1[R∞I ] by

< f, g >=

∞∑
k=1

tk

[∫
R∞I
Ek(x)f(x)dλ∞(x)

][∫
R∞I
Ek(x)g(y)dλ∞(y)

]c
.

Easily we can find that this inner product and that

||f ||2 =< f, f >=

∞∑
k=1

tk

∣∣∣∣∣
∫
R∞I
Ek(x)f(x)dλ∞(x)

∣∣∣∣∣
2

.

We call the completion of L1[R∞I ] with the above inner product is a Hilbert space, which we denote SD2[R∞I ].

Theorem 3.5 For each p, 1 ≤ p ≤ ∞, we have

1. The space Lp[R∞I ] ⊂ SD2[R∞I ] as a continuous, dense and compact embedding.

2. M[R∞I ] ⊂ SD2[R∞I ], M[R∞I ] is the space of finitely additive measures on R∞I , as a continuous dense and
compact embedding.

Proof: (1) As Lp[RnI ] ⊂ SD2[RnI ], for each p, 1 ≤ p ≤ ∞ as a continuous, dense and compact embedding.
However SD2[R∞I ] is the closure of

⋃∞
n=1 SD

2[RnI ]. It follows SD2[R∞I ] contains
⋃∞
n=1 L

p[RnI ] which is dense
in Lp[R∞I ]. as it’s closure.
(2) As L1[R∞I ] ⊂ SD2[R∞I ] and M[RnI ] = {L1[RnI ]}∗∗.
It gives

⋃∞
n=1{M[RnI ]} =

⋃∞
n=1{L1[RnI ]}∗∗. Since f ∈ SD2[R∞I ] is the limit of a sequence {fn} ⊂

⋃∞
n=1 SD

2[RnI ].
So M[R∞I ] = {L1[R∞I ]}∗∗ and hence M[R∞I ] ⊂ SD2[R∞I ].

Definition 3.6 We call SD2[R∞I ] the Jones-strong distribution Hilbert space on R∞I . Let α be a multi-index of
non negative integers α = (α1, α2, . . . ) with |α| =

∑∞
j=1 αj . If D denotes the standard partial differential

operator, let Dα = Dα1Dα2 . . . .

3.0.1 Test function and Distribution in R∞I
Here our space is R∞I . We replace R∞I with its support in Rn of [3]. Let α = (α1, α2, α3, . . . ) be multi-index of

non negative integers, with |α| =
∞∑
k=1

αk.

We define the operators Dα
∞ and Dα,∞ by Dα

∞ = Π∞k=1
∂α
k

δxαk and Dα,∞ = Π∞k=1( 1
2πi

∂
∂xk

)αk .

Let Cc[R∞I ] be the class of infinitely differentiable functions on R∞I with the compact support and impose the
natural locally convex topology τ on Cc[R∞I ] to obtain D[R∞I ].

Definition 3.7 A sequence {fm} converges to f ∈ D[R∞I ] with respect to the compact sequential limit topology
if and only if there exists a compact set K ⊂ R∞I , which contain the support of fm → f for each m and
Dα
∞fm → Dα

∞f uniformly on K, for every multi-index α ∈ N∞0 .

Let u ∈ C1[R∞I ] and suppose that φ ∈ C∞c [R∞I ] has its support in a unit ball Br, r > 0.
Then ∫

R∞I
(φuyi)dλ∞ =

∫
∂Br

(uφ)vds−
∫
R∞I

(uφyi)dλ∞,
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where v is the unit outward normal to Br. Since φ vanishes on the ∂Br, then∫
R∞I

(φuyi)dλ∞ = −
∫
R∞I

(uφyi)dλ∞, 1 ≤ i ≤ ∞.

So, in general case, for any u ∈ Cm[R∞I ] and any multi-index α = (α1, α2, . . . ), with |α| =
∑∞
i=1 αi = m,∫

R∞I
φ(Dαu)dλ∞ = (−1)m

∫
R∞I

u(Dαφ)dλ∞. (1)

Lemma 3.8 A function u ∈ L1
loc[R∞I ] if it is Lebesgue integrable on every compact subset of R∞I .

Proof: We know u ∈ L1
loc[RnI ] if it is Lebesgue integrable on every compact subset of RnI .

So, u ∈ L1
loc[

∞⋃
n=1

RnI ] if it is Lebesgue integrable on every compact subset of
∞⋃
n=1

RnI .

That is a function u ∈ L1
loc[R∞I ] if it is Lebesgue integrable on every compact subset of R∞I .

Remark 3.9 With the Lemma(3.8), we can conclude the Equation (1) is fit even if Dαu does not exist according
to our normal definition.

Definition 3.10 If α is a multi-index and u, v ∈ L1
loc[R∞I ], we say that v is the αth-weak (or distributional) partial

derivative of u and we write Dαu = v provided∫
R∞I

u(Dαφ)dλ∞ = (−1)|α|
∫
R∞I

φvdλ∞

for all functions φ ∈ C∞c [R∞I ]. Thus v is in the dual space D
′
[R∞I ] of D[R∞I ].

Lemma 3.11 If a weak αth-partial derivatives exists for u, then it is unique λ∞−a.e.

Theorem 3.12 D[R∞I ] ⊂ SD2[R∞I ] as continuous embedding.

Proof: SinceD[Rn] ⊂ SD2[Rn] as a continuous embedding. So,D[RnI ] ⊂ SD2[RnI ] as a continuous embedding.
Clearly by construction of D[R∞I ] and SD2[R∞I ], so easily we can show D[R∞I ] ⊂ SD2[R∞I ] as a continuous
embedding.
More analytical way we can state the above theorem as follows:

Theorem 3.13 Let D[R∞I ] be C∞c [R∞I ] equipped with the standard locally convex topology (test functions). If
φj → φ in D[R∞I ], then φj → φ in the norm topology of SD2[R∞I ], so that D[R∞I ] ⊂ SD2[R∞I ] as continuous
embedding.

Corollary 3.14 Let D[R∞I ] be C∞c [R∞I ] equipped with the standard locally convex topology (test functions). If
φj → φ in D[R∞I ], then φj → φ in the norm topology of SD2[R∞I ], so that D[R∞I ] ⊂ SD2[R∞I ] as a dense
embedding.

Proof: By the Theorem 3.13, since α is arbitrary, we see that D[R∞I ] ⊂ SD2[R∞I ] as a continuous embedding.
Since C∞c [R∞I ] is dense in L1[R∞I ], so D[R∞I ] is dense in SD2[R∞I ].

Theorem 3.15 Let D[R∞I ] be C∞c [R∞I ] equipped with the standard locally convex topology (test functions). If
T ∈ D′ [R∞I ], then T ∈ SD2[R∞I ]

′
so that D

′
[R∞I ] ⊂ SD2[R∞I ]

′
as a continuous dense embedding.

Proof: As D[R∞I ] is locally dense convex subspace of SD2[R∞I ], then every continuous linear functional, T
defined on D[R∞I ], can be extended to a continuous linear functional on SD2[R∞I ].
By Riesz representation theorem, every continuous linear functional T defined on SD2[R∞I ] is of the form
T (f) =< f, g >SD, for some g ∈ SD2[R∞I ]. So, T ∈ SD2[R∞I ]

′
and T ↔ g for each T ∈ D

′
[R∞I ]. So,

it is possible to map D
′
[R∞I ] into SD2[R∞I ] as a continuous dense embedding.

Theorem 3.16 For any f, g ∈ SD2[R∞I ] and any multi-index α, we have

< Dαf, g >SD[R∞I ]= (−i)α < f, g >SD[R∞I ] .
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Proof: Let Ek ∈ C∞c [R∞I ]. Then for f ∈ SD2[R∞I ], we have∫
R∞I
Ek(x)Dαf(x)dλ∞(x) = (−1)|α|

∫
R∞I

DαEk(x)f(x)dλ∞(x)

= (−i)α
∫
R∞I
Ek(x)f(x)dλ∞(x).

Now, for any g ∈ SD2[R∞I ],

< Dαf, g >SD2[R∞I ]= (−i)α < f, g >SD2 [R∞I ].

Theorem 3.17 The function space S[R∞I ], of rapid decrease at infinity are contained in SD2[R∞I ] as continuous
embedding, so that S ′ [R∞I ] ⊂ SD2[R∞I ]

′
.

Proof: Since S[RnI ] ⊂ SD2[RnI ] continuous embedding, so that S ′ [RnI ] ⊂ SD2[RnI ]
′
. The remaining proof is

easy, so we left to the reader.
In general we construct the space SDp[R∞I ] for f ∈ Lp[R∞I ], define

||f ||SDp[R∞I ] =



(
∞∑
k=1

tk

∣∣∣∣∣ ∫R∞I Ek(x)Dαf(x)dλ∞(x)

∣∣∣∣∣
p) 1

p

, for 1 ≤ p <∞;

sup
k≥1

∣∣∣∣∣ ∫R∞I Ek(x)Dαf(x)dλ∞(x)

∣∣∣∣∣ , for p =∞.

It is easy to see that ||f ||SDp[R∞I ] defines a norm on Lp[R∞I ]. If SDp[R∞I ] is completion of Lp[R∞I ] then we have
the following.

Theorem 3.18 For SDp[R∞I ], 1 ≤ p ≤ ∞

1. If fn → f weakly in Lp[R∞I ] then fn → f strongly in SDp[R∞I ].

2. SDp[R∞I ] is uniformly convex.

3. If 1 ≤ q ≤ ∞ and 1
p + 1

q = 1, then dual space of SDp[R∞I ] is SDq[R∞I ].

4. SD∞[R∞I ] ⊂ SDp[R∞I ].

Proof: (1) If {fn} is weakly convergence in Lp[R∞I ] with limit f. Then∫
RnI

Ek(x)|fn(x)− f(x)|dλ∞(x)→ 0 for each k.

For each fn ∈ SDp[RnI ] for all n, then we have

lim
n→∞

∫
RnI

Ek(x)|Dα(fn(x)− f(x))|dλ∞(x)→ 0.

(2) We know Lp[RnI ] is uniformly convex for each n and that is dense and compactly embedded in SDq[RnI ]

for 1 ≤ q ≤ ∞. So,
∞⋃
n=1

Lp[RnI ] is uniformly convex for each n and that is dense and compactly embedded in
∞⋃
n=1

SDp[RnI ] for 1 ≤ p ≤ ∞. However Lp[R̂∞I ] =
∞⋃
n=1

Lp[RnI ]. That is Lp[R̂∞I ] is uniformly convex, dense and

compactly embedded in SDp[R̂∞I ] for 1 ≤ p ≤ ∞.
As SDp[R∞I ] is the closure of SDp[R̂∞I ]. Therefore SDp[R∞I ] is uniformly convex.
(3) From (2) we have that SDp[R∞I ] is reflexive, for 1 < p <∞. Since{

SDp[RkI ]
}∗

= SDq[RkI ], 1
p + 1

q = 1, ∀k and
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SDp[RkI ] ⊂ SDp[Rk+1
I ], ∀k ⇒

∞⋃
k=1

{
SDp[RkI ]

}∗
=

∞⋃
k=1

SDq[RkI ], 1
p + 1

q = 1.

Since each f ∈ SDp[R∞I ] is the limit of a sequence {fn} ⊂
∞⋃
k=1

SDp[RkI ], we see that {SDp[R∞I ]}∗ =

SDq[R∞I ], for 1
p + 1

q = 1.

(4) Let f ∈ SD∞[R∞I ]. This implies

∣∣∣∣∣ ∫R∞I Ek(x)Dαf(x)dλ∞(x)

∣∣∣∣∣ is uniformly bounded for all k. It follows that∣∣∣∣∣ ∫R∞I Ek(x)Dαf(x)dλ∞(x)

∣∣∣∣∣
p

is uniformly bounded for 1 ≤ p < ∞. It is clear from the definition of SDp[R∞I ]

that ∑
∣∣∣∣∣∣∣
∫
R∞I

Ek(x)Dαf(x)dλ∞(x)

∣∣∣∣∣∣∣
p

1
p

≤M ||f ||SDp[R∞I ] <∞.

So, f ∈ SDp[R∞I ].

We recall the space

Xm
p [Rn] = {Bα ∗ g = (1−∆)

−α
2 g : g ∈ Lp[Rn], 0 < α < n, 0 < α < m}

is coincides with Wm
p [Rn] when 1 < p < ∞ and m > 0, where Bα is the Bessel potential of order α, ∆ is the

Laplacian and ∗ is the convolution operator.
We define Wm

p [R∞I ] is the space of all functions u ∈ L1
loc[R∞I ] whose weak derivative ∂αu ∈ Lp[R∞I ] for every

α ∈ N∞0 with |α| = m.

Theorem 3.19 Wm
p [R∞I ] ⊂ SD2[R∞I ] as a continuous dense embedding, for all m and all p.

Proof: We can find Wm
p [RnI ] ⊂ SD2[RnI ] as continuous dense embedding. However SD2[R∞I ] is the closure of

∞⋃
k=1

SD2[RkI ].

That is SD2[R∞I ] contains
∞⋃
k=1

SD2[RkI ] which is dense in Wm
p [R∞I ] as it’s closure.

Hence, Wm
p [R∞I ] ⊂ SD2[R∞I ] as continuous dense embedding.

In the last, we call a function f such that
∫

R∞I
|Ek(x)f(x)dλ∞(x)|p <∞ for every compact set K in R∞I is said to

be in Lploc[R∞I ].

3.0.2 Functions of Bounded variation

The objective of this section is to show that every HK-integrable function is in SD2[R∞I ]. To do this, we need
to discuss a certain class of functions of bounded variation in the sense of Cesari (see [10]) are well known for
working in PDE (partial differential equations) and geometric measure theory. Also we consider the function of
bounded variation in Vitali sense (see [15]) are applied in applied mathematics and engineering for error estimation
associated with research in control theory, financial derivatives, robotics, high speed networks and in calculation
of certain integrals. We developed this portion through the Definition 3.38 and 3.39 of [3].

Definition 3.20 A function f ∈ L1[R∞I ] is said to be bounded variation i.e. f ∈ BVc[R∞I ] if f ∈ L1[R∞I ] there
exists a signed Radon measure µi such that∫

R∞I

f(x)
∂φ(x)

∂xi
dλ∞(x) = −

∫
R∞I

φ(x)dµi(xi)

for i = 1, 2, 3, . . . ,∞ for all φ ∈ C∞0 [R∞I ]
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Definition 3.21 A function f with continuous partial derivatives is said to be of bounded variation i.e. f ∈
BVv[R∞I ] if for all Dn = {(ai, bi)× In} , 1 ≤ i ≤ n for all (ai, bi) is an interval in Rn,

V (f) = lim
n→∞

∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

∣∣∣∣ ∂nf(x)

∂x1∂x2 . . . ∂xn

∣∣∣∣ dλ∞(x) <∞.

Definition 3.22 We define BVv,0[R∞I ] by

BVv,0[R∞I ] = {f(x) ∈ BVv[R∞I ] : f(x)→ 0 as xi →∞} ,

where xi is any component of x.

Theorem 3.23 The space HK[R∞I ] of all HK-integrable functions is contained in SD2[R∞I ].

Proof: Since Ek(x) is continuous and differentiable, therefore Ek(x) ∈ BVv,0[R∞I ] so that for f ∈ HK[R∞I ],
gives

||f ||SD2[R∞I ] =

∞∑
k=1

tk

∣∣∣∣∣∣∣
∫
R∞I

Ek(x)f(x)dλ∞(x)

∣∣∣∣∣∣∣
2

≤ sup
k

∣∣∣∣∣∣∣
∫
R∞I

Ek(x)f(x)dλ∞(x)

∣∣∣∣∣∣∣
2

≤ ||f ||2HK [sup
k
V (Ek)]2 <∞.

So, f ∈ SD2[R∞I ].

4 Conclusion
We have constructed a new class of separable Banach spaces, SDp[R∞I ], 1 ≤ p ≤ ∞, which contain each
Lp-space as a dense continuous and compact embedding. These spaces have the remarkable property that, for
any multi-index α, ||Dαu||SD = ||u||SD. We have shown that our spaces contain the non-absolutely integrable
functions and the space of test functions D[R∞I ], as a dense continuous embedding. We have discussed their basic
properties and their relationship to D[R∞I ], S[R∞I ] and S ′ [R∞I ].
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