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Abstract: The present flow model deals with analytical solution for unsteady gravity-driven thermal convection 

flow of a viscous incompressible, absorbing-emitting, electrically-conducting, optically-thick gray gas along an 

inclined plane in saturated porous medium in presence of a transverse magnetic field. To simulate thermal 

radiation effects the Rosseland diffusion flux model is employed. Moreover, for some of physical parameters 

numerical investigations have been made for the flow velocity, flow temperature, skin-friction coefficient and 

surface heat transfer rate. With increasing inclination of the plane the flow is found to be accelerated. With 

progression of porosity and greater inclination of the plate velocity gradients at the plate are found to be enhanced. 

Applications of the model arise in astrophysics, high temperature materials operations exploiting magnetic fields 

and MHD (Magneto-Hydro-Dynamic) energy generators.  
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1. Introduction:  

 

Radiative convective flows are encountered in countless industrial and environment processes in various solar 

power technologies, fossil fuel combustion energy processes, heating and cooling chambers, evaporation from 

large open water reservoirs, and space vehicle re-entry. Radiative heat transfer plays an important role in 

manufacturing industries for the design of reliable equipment. Examples of such engineering applications are 

Nuclear power plants, gas turbines and various propulsion devices for aircraft, missiles, satellites and space 

vehicles. For numerous applications in physics and engineering the hydrodynamic rotating flow of an electrically 

conducting viscous incompressible fluid has gained considerable attention. The free convective flow in channels 

formed by vertical plates has received attention among the researchers in last few decades due to its widespread 

importance in engineering applications like cooling of electronic equipments, design of passive solar systems for 

energy conversion, design of heat exchangers, human comfort in buildings, thermal regulation processes and many 

more.  

          Helliwell [1] investigated a flux model to analyzed radiation Magnetohydrodynamic channel flow. 

Hydromagnetic thermal convection in a vertical conduit with significant thermal radiation effects have been 

studied by Gupta and Gupta [2]. The steady Radiative Magnetogasdynamic Couette flow using temperature 

dependent coefficients of viscosity and electrical conductivity had discussed by Helliwell [3], together with a 

density-dependent absorption coefficient. Mandal et al. [4] investigated combined radiative-hydromagnetic flow, 

heat and mass transfer in a vertical channel. Raptis and Masslas [5] also investigated the unsteady 

Magnetohydrodynamic convection non-scattering fluid regime using the Rosseland radiation model and presented 

analytical solutions with graphical representation for the mean temperature, velocity and the induced magnetic 

field.  

          Azzam [6] have been considered the thermal radiation flux influence on hydromagnetic mixed free- forced 

convective steady flow also using the Rosseland approximation. Gbadeyan and Idowu [7] investigated the 

Magnetohydrodynamic heat transfer between two concentric rotating spheres employing the optically thin limit 

case for radiative heat flux. Ogulu and Prakash [8] discussed analytically free convection magneto-heat transfer 

using the differential approximation for optically-thin radiative flux in the energy equation and incorporating 

viscous dissipation effects. Temperature-dependent viscosity effects in transient dissipative radiation-

hydromagnetic convection, showing that an increase in Eckert number and decrease in air viscosity accelerate the 

flow have been investigated Mahmoud [9]. Jang and Hsu [10] discussed numerically the vortex instability of a 
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horizontal Magnetohydrodynamic natural convection boundary layer flow in a saturated porous medium including 

thermal radiation.  

          In the above discussion have not assess however the flow from an inclined surface, a regime of considerable 

importance in glass manufacturing [11,12], solar energy collectors, film cooling chemical engineering systems, 

and electronic circuit cooling mechanisms. The transient convection flow past an inclined plane in presence of 

magnetic field with thermal radiation investigated Ghosh et al. [13].  

          The our present studies aims to consider a Darcian flow model for the unsteady convection flow of an 

electrically-conducting, absorbing-emitting, optically-thick gray gas along an inclined plane in a saturated porous 

medium in the presence of a transverse magnetic field with thermal radiation flux. The effects of the significant 

physical parameters on the flow regime are discussed in detail and Analytical solutions are developed through 

Laplace Transform Technique.  

           

2. Mathematical Formulation: 

 

We consider the transient hydromagnetic flow of a viscous, incompressible, electrically-conducting, absorbing-

emitting, non-scattering, optically-thick gas along an infinite plate inclined at  to the horizontal immersed in a 

saturated porous medium, the plate is moving with constant velocity, 𝑢0  as shown below in Figure 1. Refractive 

index of the gas medium is constant. 

 

 
Figure 1: Flow configuration 

A uniform magnetic field, B0, is applied perpendicular to the plate. The x- axis is orientated along the plate and 

the y- axis perpendicular to the plate. The Maxwell field equations, as described by Sutton and Sherman [14] 

comprise five vector equations-the Ampere law, magnetic field continuity, Faraday’s law, Kirchoff’s law and 

finally Ohm’s law. The generalized equations in vectorial form, for flow of an electrically-conducting gas are the 

Maxwell equations: 

𝑐𝑢𝑟𝑙 (𝐵⃗ ) = 𝜇𝐽      𝐴𝑚𝑝𝑒𝑟𝑒′𝑠 𝐿𝑎𝑤                                                                        (1) 

𝑑𝑖𝑣 (𝐵⃗ ) = 0     𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦                                                      (2) 

𝑐𝑢𝑟𝑙 (𝐸⃗ ) = −
𝜕𝐵⃗ 

𝜕𝑡
    𝐹𝑎𝑟𝑎𝑑𝑎𝑦′𝑠    𝐿𝑎𝑤                                                                 (3) 

𝑑𝑖𝑣 (𝐽 ) = −
𝜕𝐵⃗ 

𝜕𝑡
    𝐾𝑖𝑟𝑐ℎ𝑜𝑓𝑓′𝑠    𝐿𝑎𝑤                                                                   (4) 

𝐽 = 𝜎[𝐸⃗ + 𝑣 × 𝐵⃗ ]    𝑂ℎ𝑚′𝑠    𝐿𝑎𝑤                                                                       (5) 

where 𝐽  is the current density, 𝐵⃗  is the magnetic field vector, 𝜎 is the electrical conductivity, 𝐸⃗  is the electrical 

field intensity vector, 𝜌 is density, 𝑣  v is the velocity vector, 𝜇 is co-efficient of viscosity, 𝑡 is time.  

          From an order of magnitude analysis, it can be shown, Sutton and Sherman [14] that for two-dimensional 

(𝑥 − 𝑦) magneto-hydrodynamic gas dynamic flows, the hydromagnetic retarding force (Lorentz body force) acts 

only parallel to the flow and has the form: 

𝐹𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 ≈ −𝜎𝐵𝑦
2𝑢,                                                                                                          (6) 



Journal of Applied and Fundamental Sciences    
   

   
 

 

   
JAFS|ISSN 2395-5554 (Print)|ISSN 2395-5562 (Online)|Vol 7(1)|June 2021                                                    43 

where By is the component of magnetic field in the y- direction. 

          We consider an aerodynamic viscous flow where the magnetic field is sufficiently weak to sustain a small 

magnetic Reynolds number such that induced magnetic field effects can be neglected. Joule electro-heating and 

Hall current/ion-slip effects are also neglected. The temperature of the gas in the regime is 𝑇 and an induced 

pressure gradient generated by indirect natural convection acts along the 𝑥 − direction. All fluid properties are 

constant. The plate temperature is prescribed 𝑇𝑤and is of sufficiently high magnitude that thermal radiation effects 

are significant. In accordance with the Boussinesq approximation, all fluid properties are constant with the 

exception of the density variation in the buoyancy term. Unidirectional radiation flux, 𝑄𝑟  is considered and it is 

assumed that  
𝜕𝑄𝑟

𝜕𝑦
≫

𝜕𝑄𝑟

𝜕𝑥
. 

Under these simplification, the mass, momentum and energy conservation equations for the regime with regard 

to indirect natural convection, may be presented as follows: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                                                                          (7) 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈

𝜕2𝑢

𝜕𝑦
2 + 𝑔𝛽(𝑇 − 𝑇∞) 𝑠𝑖𝑛𝛼 −

𝜎𝐵0
2

𝜌
𝑢 −   

𝜈

𝐾𝑝

𝑢                                     (8) 

0 = −
1

𝜌

𝜕𝑝

𝜕𝑦
− 𝑔𝛽(𝑇 − 𝑇∞) 𝑐𝑜𝑠𝛼                                                                                                                      (9) 

𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝜅

𝜕2𝑇

𝜕𝑦
2 −

𝜕𝑞𝑟

𝜕𝑦
                                                                                                                                    (10) 

The initial and boundary conditions are 

{

𝑢 = 0, 𝑇 = 𝑇∞∀𝑦, 𝑡 ≤ 0

𝑢 = 𝑢0, 𝑇 = 𝑇𝑤𝑎𝑡𝑦 = 0, 𝑡 > 0

𝑢 → 0, 𝑇 → 𝑇∞𝑡 > 0

},                                                                 (11) 

 

where 𝑢 is the velocity in the 𝑥 − direction, 𝑣 is velocity in the 𝑦 − direction, 𝑡 denotes time, 𝑔 the acceleration 

due to gravity, 𝜈 -dense gas, 𝛽 is volumetric coefficient of thermal 

expansion, 𝑇 the temperature of the fluid, 𝑇∞ is free stream temperature of the fluid, 𝑇𝑤 is the plate surface 

temperature, 𝜌 the density, 𝐶𝑝 is the specific heat at constant pressure, 𝜅 is thermal conductivity of the optically-

dense fluid, 𝜎 is electrical conductivity of the gas and 𝐵0 is magnetic field and 𝑄𝑟  is the radiative heat flux.  

          In transient flow, the frictional (viscous) and gravitational forces do not balance exactly and the discrepancy 

is proportional to the acceleration of the fluid. The deviation between the free surface of the gas and the plate 

inclination also contributes to this and an instability mechanism arises in the inclined plane flow. There is a 

pressure distribution in the flow with a gradient defined as: 

𝜕𝑝

𝜕𝑦
= 𝜌𝑔                                                                                                                        (12) 

 

After integration, Eq. (9) becomes: 

𝑝 = 𝜌𝑔𝑦(ℎ − 𝑦)(𝑇 − 𝑇∞)𝑐𝑜𝑠𝛼,                                                                               (13) 

where h denotes free surface elevation.  

Differentiating (13) with respect to
x

, yields: 

𝜕𝑝

𝜕𝑥
= 𝜌𝑔𝑦(𝑇 − 𝑇∞)

𝜕ℎ

𝜕𝑥
𝑐𝑜𝑠𝛼                                                                                (14) 

Above the leading edge of the plate (𝑥 = 0), the density variation with depth is constant i.e. will remain unchanged 

for all 
𝜕ℎ

𝜕𝑥
. We therefore prescribe the following condition: 

𝜕ℎ

𝜕𝑥
= 𝑐𝑜𝑠𝛼𝑡𝑎𝑛𝑡 = 𝐹1                                                                                              (15) 

Introducing the following non-dimensional quantities for the solution of the two-point boundary value problem 

defined by Eqs (7) to (10) under the boundary conditions (11): 
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where 𝑢 denotes dimensionless 𝑥 − direction velocity, 𝑡 is non-dimensional time, 𝑦 is dimensionless transverse 

coordinate, 𝜃 is the dimensionless temperature function, 𝐺𝑟 is the Grashof (free convection) number, 𝑃𝑟 is the 

Prandtl number and 𝑀𝑑 denotes the square root of the Hartmann hydromagnetic number.  

          On using Eq. (15) in Eqs (8) and (9), and neglecting convective acceleration terms, the dimensionless form 

of the momentum equation is:  

𝜕𝑢

𝜕𝑡
= 𝐺𝑟ℎ(𝑆𝑖𝑛𝛼 − 𝐹1𝑐𝑜𝑠𝛼)𝜃 +

𝜕2𝑢

𝜕𝑦2
− (𝑀𝑑 + 𝐾−1)𝑢                                  (17) 

The radiation heat flux vector is addressed using the approach outlined by Isachenko et al. [15]. The Rosseland 

diffusion flux approximation is therefore used leading to a Fourier-type gradient function, viz: 

𝑄𝑟 =
−4𝜎

3𝜅∗

𝜕𝑇
4

𝜕𝑦
,                                                                                               (18) 

where 𝜎 is the Stefan-Boltzmann constant and * is the spectral mean absorption coefficient of the medium. 

          This model is valid for optically-thick media in which thermal radiation propagates only a limited distance 

prior to experiencing scattering or absorption. The local thermal radiation intensity is due to radiation emanating 

from proximate locations in the vicinity of which emission and scattering are comparable to the location of 

interest. For zones where conditions are appreciably different thermal radiation has been shown to be greatly 

attenuated before arriving at the location under consideration. The energy transfer depends on conditions only in 

the area adjacent to the plate regime i.e. the boundary layer regime. Rosseland’s model yields accurate results for 

intensive absorption i.e. optically-thick flows which are optically far from the bounding surface. Implicit in this 

approximation is also the existence of wavelength regions where the optical thickness may exceed a value of five. 

As such the Rosseland model, while limited compared with other flux models, can simulate to a reasonable degree 

of accuracy thermal radiation effects in engineering flow problems, as elaborated upon by Modest [16]. We further 

assume that the temperature differences within the flow are sufficiently small such that 𝑇
4
 can be expressed as a 

linear function of the temperature, 𝑇. Expansion of 𝑇
4
 as a Taylor series about the free stream temperature, 𝑇∞, 

neglecting higher order terms, generates a result of the form: 

𝑇
4

≅ 4𝑇∞

3
𝑇 − 3𝑇∞

4
                                                                                           (19) 

Proceeding with the analysis, the energy Eq. (10) may be orchestrated in dimensionless form subject to Eq. (16) 

as follows: 

(1 + 𝑅𝑎)
𝜕2𝜃

𝜕𝑦2
− 𝑃𝑟

𝜕𝜃

𝜕𝑡
= 0,                                                                             (20) 

where 𝑅𝑎 denotes the Boltzmann – Rosseland radiation-conduction number. 

            The first term in Eq. (20) is an augmented diffusion term i.e. with 𝑅𝑎=0, thermal radiation vanishes and 

Eq. (20) reduces to the familiar unsteady one-dimensional conduction-convection equation.  

The boundary conditions (11) are transformed to: 

{
∀𝑦, 𝑡 ≤ 0: 𝑢 = 0, 𝜃 = 0

𝑡 > 0: 𝑢 = 1, 𝜃 = 0𝑎𝑡𝑦 = 0
𝑡 > 0: 𝑢 → 0, 𝜃 → 0𝑎𝑠𝑦 → ∞

}                                                                 (21) 

 

3. Analytical Solutions:  

 

The two-point boundary value problem defined by Eqs (17) and (20) along with their boundary conditions (21) 

have been solved analytically using Laplace transforms technique and their exact solutions are as follows: 

 

𝑢(𝑦, 𝑡) =

[
 
 
 
 
 
 
 
 

1

2
{1 −

𝐺𝑟

𝑁
(𝑠𝑖𝑛𝛼 − 𝐹1𝑐𝑜𝑠𝛼)} {𝑒−𝑁𝑦𝑒𝑟𝑓𝑐 (

𝑦 − 2𝑁𝑡

√𝑡
) + 𝑒𝑁𝑦𝑒𝑟𝑓𝑐 (

𝑦 + 2𝑁𝑡

√𝑡
)}

+𝐺𝑟

𝑁
(𝑠𝑖𝑛𝛼 − 𝐹1𝑐𝑜𝑠𝛼)𝑒𝑟𝑓𝑐 (

𝑦

2
√

𝑃𝑟

(1 + 𝑅𝑎)𝑡
) + (𝑠𝑖𝑛𝛼 − 𝐹1𝑐𝑜𝑠𝛼)

𝑦

√4𝜋

𝐺𝑟ℎ
𝑁

√2 − 1

√𝑡

[𝑒𝑥𝑝 {−(
𝑦2

4
+ 𝑁𝑡)} − √

𝑃𝑟

1 + 𝑅𝑎
𝑒𝑥𝑝 {−(

𝑦2𝑃𝑟

4(1 + 𝑅𝑎)𝑡
)}]

]
 
 
 
 
 
 
 
 

(22) 
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𝜃(𝑦, 𝑡) = 𝑒𝑟𝑓𝑐 {
𝑦

2
√

𝑃𝑟

(1 + 𝑅𝑎)𝑡
},                                                  (23) 

where, 

𝑁 = 𝑀𝑑
2 + 𝐾−1. 

               In order to interest in engineering design, the frictional shear stress at the plate surface (y = 0) and the 

surface temperature gradient, are defined respectively as: 

𝜏 = −
𝜕𝑢(𝑦, 𝑡)

𝜕𝑦
|
𝑦=0

 

[
 
 
 
 
 
 
 
 
 
 
 
 
1

2
{1 −

𝐺𝑟

𝑁
(𝑠𝑖𝑛𝛼 − 𝐹1𝑐𝑜𝑠𝛼)} {𝑁𝑒𝑟𝑓𝑐(𝑁√𝑡) − 𝑁𝑒𝑟𝑓𝑐(−𝑁√𝑡) − 𝑒−𝑁𝑡}

−𝐺𝑟

𝑁
(𝑠𝑖𝑛𝛼 − 𝐹1𝑐𝑜𝑠𝛼)

1

√𝜋
𝑒𝑟𝑓𝑐 (

𝑦

2
√

𝑃𝑟

(1 + 𝑅𝑎)𝑡
)

+(𝑠𝑖𝑛𝛼 − 𝐹1𝑐𝑜𝑠𝛼)
1

√4𝜋

𝐺𝑟ℎ
𝑁

√2 − 1

√𝑡
[𝑒𝑥𝑝(−𝑁𝑡) − √

𝑃𝑟

1 + 𝑅𝑎
]

[𝑒𝑥𝑝(−𝑁𝑡) − √
𝑃𝑟

1 + 𝑅𝑎
]

]
 
 
 
 
 
 
 
 
 
 
 
 

              (24) 

     

𝑁𝑢 = −
𝜕𝜃(𝑦, 𝑡)

𝜕𝑦
|
𝑦=0

= √
1

𝜋(1 + 𝑅𝑎)𝑡
                                              (25) 

                                                      

Some special cases have studied during the investigation. 

 

Case I: Non-Radiative Hydromagnetic Inclined Plate Flow –  

In the absence of thermal radiation effects, 𝑅𝑎 → 0 and the velocity and temperature solutions (22) and (23) reduce 

to the case for hydromagnetic free convection flow from an inclined plane: 

𝑢(𝑦, 𝑡) =

[
 
 
 
 
 
 
 

1

2
{1 −

𝐺𝑟

𝑁
(𝑠𝑖𝑛𝛼 − 𝐹1𝑐𝑜𝑠𝛼)} {𝑒−𝑁𝑦𝑒𝑟𝑓𝑐 (

𝑦 − 2𝑁𝑡

√𝑡
) + 𝑒𝑁𝑦𝑒𝑟𝑓𝑐 (

𝑦 + 2𝑁𝑡

√𝑡
)}

+𝐺𝑟

𝑁
(𝑠𝑖𝑛𝛼 − 𝐹1𝑐𝑜𝑠𝛼)𝑒𝑟𝑓𝑐 (

𝑦

2
√

𝑃𝑟

𝑡
)

+(𝑠𝑖𝑛𝛼 − 𝐹1𝑐𝑜𝑠𝛼)
𝑦

√4𝜋

𝐺𝑟

𝑁

√2 − 1

√𝑡
[𝑒𝑥𝑝 {−(

𝑦2

4
+ 𝑁𝑡)} − √𝑃𝑟𝑒𝑥𝑝 {−(

𝑦2𝑃𝑟

4𝑡
)}]

]
 
 
 
 
 
 
 

(26) 

𝜃(𝑦, 𝑡) = 𝑒𝑟𝑓𝑐 {
𝑦

2
√

𝑃𝑟

𝑡
}                                                         (27) 

Case II: Magnetohydrodynamic Radiative-Convection from a Horizontal Plane –   

With 𝛼 → 0, 𝑠𝑖𝑛𝛼 → 0 and 𝑐𝑜𝑠𝛼 → 1, the plate becomes horizontal and the velocity solution (22) reduces to: 
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𝑢(𝑦, 𝑡) =

[
 
 
 
 
 
 
 
 

1

2
{1 +

𝐹1𝐺𝑟ℎ
𝑁

} {𝑒−𝑁𝑦𝑒𝑟𝑓𝑐 (
𝑦 − 2𝑁𝑡

√𝑡
) + 𝑒𝑁𝑦𝑒𝑟𝑓𝑐 (

𝑦 + 2𝑁𝑡

√𝑡
)}

−𝐹1𝐺𝑟

𝑁
𝑒𝑟𝑓𝑐 (

𝑦

2
√

𝑃𝑟

(1 + 𝑅𝑎)𝑡
)

−𝐹1

𝑦

√4𝜋

𝐺𝑟

𝑁

√2 − 1

√𝑡
[𝑒𝑥𝑝 {−(

𝑦2

4
+ 𝑁𝑡)} − √

𝑃𝑟

1 + 𝑅𝑑
𝑒𝑥𝑝 {−(

𝑦2𝑃𝑟

4(1 + 𝑅𝑑)𝑡
)}]

]
 
 
 
 
 
 
 
 

(28) 

Case III: Magnetohydrodynamic Radiative-Convection from a Vertical Plane –  

With 𝛼 → 𝜋 2⁄ , 𝑠𝑖𝑛𝛼 → 1 and 𝑐𝑜𝑠𝛼 → 0, the plate becomes vertical and the velocity solution (22) will reduce to: 

𝑢(𝑦, 𝑡) =

[
 
 
 
 
 
 
 
 

1

2
{1 −

𝐺𝑟

𝑁
} {𝑒−𝑁𝑦𝑒𝑟𝑓𝑐 (

𝑦 − 2𝑁𝑡

√𝑡
) + 𝑒𝑁𝑦𝑒𝑟𝑓𝑐 (

𝑦 + 2𝑁𝑡

√𝑡
)}

+𝐺𝑟

𝑁
𝑒𝑟𝑓𝑐 (

𝑦

2
√

𝑃𝑟

(1 + 𝑅𝑎)𝑡
)

+𝑦

√4𝜋

𝐺𝑟

𝑁

√2 − 1

√𝑡
[𝑒𝑥𝑝 {−(

𝑦2

4
+ 𝑁𝑡)} − √

𝑃𝑟

1 + 𝑅𝑎
𝑒𝑥𝑝 {−(

𝑦2𝑃𝑟

4(1 + 𝑅𝑎)𝑡
)}]

]
 
 
 
 
 
 
 
 

(29) 

4. Validity: 

 

The effects of 𝛼 and 𝑅𝑎 on skin-friction distributions at the wall (𝑦 = 0) are compared with the available solution 

of Ghosh et al. [13] for accuracy has been presented in Table – 1 and it is found to be in excellent agreement and 

hence the proposed flow model is validated and stable for investigation. 

Table 1: Skin friction, (
𝜕𝑢

𝜕𝑦
)
𝑦=0

, at 𝑦 = 0 for 𝐹1 = 2.0, 𝑃𝑟 = 0.71, 𝐺𝑟 = 5.0, 𝑡 = 2 with various plate 

inclinations (𝛼) and Boltzmann-Rosseland numbers (𝑅𝑎) without porosity. 
 Present work Ghosh et al. (2010) 

 𝑅𝑎 = 0.0 𝑅𝑎 = 2.0 𝑅𝑎 = 5.0 𝑅𝑎 = 0.0 𝑅𝑎 = 2.0 𝑅𝑎 = 5.0 

 –6.536174  –6.915851  –7.260521  –6.536142  –6.915804  –7.260507  

 –6.351610  –6.396273  –6.472885  –6.351590  –6.396255  –6.472835  

 –6.092735  –5.978556  –5.997309  –6.092711  –5.978523  –5.997283  

 –5.658501  –5.643792  –5.637782  –5.658423  –5.643715  –5.637752  

 –5.361291  –5.299105  –5.258132  –5.361270  –5.298371  –5.258072  

 

The results through the Table 1 shows that the velocity gradients, (
𝜕𝑢

𝜕𝑦
)

𝑦=0
, at the wall y = 0 enhanced by the 

influence of various plate inclinations () and Boltzmann-Rosseland numbers (𝑅𝑎). Back flow may also observed 

due to negativity of the values of (
𝜕𝑢

𝜕𝑦
)

𝑦=0
. 

5. Results and Discussion: 

 

All the numerical computations have been done from the analytical solutions given in Eqs (22) and (23) with 

respect to air (Pr = 0.71) and the arbitrary constant, 𝐹1 = 1. The entire boundary layer regime has controlled by 

five thermo physical parameters, 𝑅𝑎, 𝑃𝑟, 𝐺𝑟, 𝑀𝑑, 𝐾, a single geometric parameter 𝛼 and time 𝑡.  

          The influence of magnetic parameter (𝑀𝑑) and plane inclinations () on the flow velocity distributions with 

transverse distance (𝑦) normal to the cooled plate (𝐺𝑟 > 0) for conduction air (𝑃𝑟 = 0.71) have been presented 

in Fig. 2. The hydromagnetic term in the dimensionless Eq. (17), is a linear drag force term. With increasing 

magnetic field strength, 𝐵0, 𝑀𝑑 is increased and this serves to decelerate the flow along the inclined plate and 

therefore all the velocity profiles are strongly reduced with increasing 𝑀𝑑. It is seen that the velocity profiles are 
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elevated near the surface and decay to zero progressively for all values of 𝑀𝑑,  and 𝑦. Moreover, an increase in 

the plane inclination, the flow velocity is significantly increased. When plane inclination is zero i.e. for the 

horizontal plane, velocity is minimized since gravitational acceleration effects are neglected. Also the flow is 

strongly accelerated for maximum plane inclination ( = /3) and these profiles correspond to strong buoyancy 

(free convection) force. 

          Figure 3 depicts the temperature response for different thermal radiations (𝑅𝑑) and time parameter (t) with 

distance transverse to the surface (i.e. with 𝑦-coordinate). The parameter 𝑅𝑎 defines the ratio of thermal 

conduction contribution relative to thermal radiation. For 𝑅𝑎 = 1, the thermal radiation and the thermal 

conduction contributions are equivalent. For 𝑅𝑎 > 1, the thermal radiation effect is dominant over the thermal 

conduction effect and vice versa for 𝑅𝑎 < 1. An increase in the value of 𝑅𝑑 from 0 (non-radiating) through 2.0, 

to 4.0 (radiation is dominant over thermal conduction), causes a significant increase in the velocity with distance 

into the boundary layer i.e. accelerates the flow. The velocities in all cases ascend from the surface, peak close to 

the wall and then decay smoothly to zero in the free stream. As expected, the temperature values are also 

significantly enhanced with an growth in the value of 𝑡 as there is a progressive increase in the time parameter 

contribution accompanying this. Rosseland's radiation diffusion model effectively enhances the thermal 

diffusivity, as described by Siegel and Howell (1972). In Eq. (20) this is apparent in the coefficient of the spatial 

temperature gradient i.e. diffusion term, (1 + 𝑅𝑎)
𝜕2𝜃

𝜕𝑦2. The temperature profiles all decay monotonically from the 

maximum at the plate surface to the free stream. 

          Figure 4 illustrates the behaviour of the porosity (𝐾) and free convection parameter i.e. Grashof number 

(𝐺𝑟) on the boundary layer variable 𝑢. Increasing the porosity of the porous medium clearly serves to enhance the 

flow velocity i.e. accelerates the flow. This effect is accentuated close to the surface where a peak in the velocity 

profile arises. With further distance transverse to the surface, the velocity profiles are all found to decay into the 

free stream. An increased porosity clearly corresponds to a reduced presence of matrix fibers in the flow regime 

which, therefore, provides a lower resistance to the flow and in turn, boosts the momentum. However, the free 

convection currents as simulated with the buoyancy term, 𝐺𝑟(𝑆𝑖𝑛𝛼 − 𝐹1𝑐𝑜𝑠𝛼)𝜃, in Eq. (17), clearly serves to 

accelerate the flow along the inclined plate and maximum peaks have been attained at higher free convection 

(𝐺𝑟 = 10). 

          The rate of heat transfer in terms of Nusselt number (𝑁𝑢) at the plate 𝑦 = 0 for various effects of 

Boltzmann-Rosseland number (𝑅𝑎) and time parameter (𝑡) is shown in Fig. 5. An increase in 𝑅𝑎 serves to 

reduction in rate of heat transfer throughout the regime, but maximum effect has observed at the plate. Also a 

substantial decrease has seen in the rate of heat transfer for increasing time parameter. The negative values of 𝑁𝑢 

assert that the heat is diffused through fluid region to the plate. 

          In Fig. 6 we have plotted the behaviour of velocity gradients at the plate 𝑦 = 0 for the variance of porosity 

of the porous medium (𝐾) and inclinations of the plate () against time (𝑡). With increasing porosity and 

inclination values, the velocity gradients in the regime are found to increases. Also the velocity gradients have a 

reverse behaviour for the time parameter i.e. substantial decrease is observed in velocity gradients.  Insignificant 

effect has occurred in the velocity gradients when the plane becomes vertical (𝛼 = 𝜋 2⁄ ). 

 
Figure2: Velocity distribution for magnetic number (𝑀𝑑) and inclinations of the plate (). 
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Figure3: Temperature distribution for Boltzmann-Rosseland radiation-convection parameter (𝑅𝑑) and time (𝑡). 

 
Figure4: Velocity distribution for porosity parameter (𝐾) and Grashof number (𝐺𝑟). 

 
Figure5: Rate of heat transfer distribution for Boltzmann-Rosseland radiation-convection parameter (𝑅𝑑) and 

time (𝑡). 
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Figure 6: Skin-friction distribution for porosity (𝐾) and inclinations of the plate () against time (𝑡). 

6. Conclusions: 

A Darcian flow model is developed for the transient hydromagnetic free convection-radiation flow of an 

incompressible viscous fluid along an inclined plane in a saturated porous medium under a transverse magnetic 

field. The Rosseland diffusion approximation, valid for optically-thick gases has been utilized. The governing 

partial differential equations are transformed into a system of ordinary differential equations using similarity 

transformations. The transformed ordinary differential equations are then solved analytically by Laplace transform 

Technique. Few significant results are summarized: 

 Enhancement of the magnetic parameter (M) and inclination of the plane () accelerated the flow 

velocity; 

 Increasing the porosity (K) and free convection parameter (G) serves to boosts the flow velocity and 

velocity gradients at the plate in the boundary layer regime; 

 Increasing Boltzmann- Rosseland number (Ra) i.e. greater thermal radiation heat transfer contribution 

serves to enhanced the fluid temperature, but a converse behaviour has occurred in the rate of heat transfer 

at the plate; 

 Increasing time parameter escalated the fluid temperature and the rate of heat transfer, whereas an 

opposite character is sustained for the velocity gradients. 

 

Nomenclature: 

𝑢̅     Fluid velocity in 𝑥̅ direction           𝑤̅     Fluid velocity in 𝑧̅ direction 

𝜐     Kinematic coefficient of viscosity   𝜎     Electrical conductivity 

𝜌     Density 𝐾1     Permeability of porous medium 

𝑔     Acceleration due to gravity             𝑇̅     Fluid temperature 

𝐶̅     Fluid concentration                         𝛽𝑇   Coefficient of thermal expansion 

𝛽𝐶      Coefficient of volume expansion   𝑚     Hall current parameter 

𝜅     Thermal conductivity                       𝐶𝑝    Specific heat at constant pressure 

𝑄0    Heat absorption coefficient              𝑇      Non-dimensional Fluid temperature 

𝑢     Non-dimensional fluid velocity 𝑥 direction              𝑣 Non-dimensional fluid velocity 𝑦 direction 

𝐶     Non-dimensional Fluid concentration                       𝑀2     Magnetic parameter 

𝐾2     Rotation or Ekman number               𝐾1     Permeability parameter 

𝐺𝑟     Grashof Number for heat transfer      𝐺𝑚     Grashof Number for mass transfer 

𝑃𝑟     Prandtl Number                                  𝑆𝑐     Schmidt Number 

𝐷     mass diffusivity                                   𝐶𝑟̅     Chemical reaction parameter  

𝜙     Non dimensional heat absorption coefficient  

𝐶𝑟     Non dimensional chemical reaction parameter 
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