
Journal of Applied and Fundamental Sciences    
   

   
 

 

   
JAFS|ISSN 2395-5554 (Print)|ISSN 2395-5562 (Online)|Vol 2(1)|May 2016                                                    42 

PREDICTION OF MICROBIAL COMMUNITY 

STABILITY THROUGH LORENZ CURVE:  A 

POTENTIAL TOOL FOR MICROBIAL COMMUNITY 

STUDIES 

 
Madhurankhi Goswami, Purnita Bhattacharyya and Prosun Tribedi٭ 

Department of Microbiology, Assam Don Bosco University, Airport Road, Azara, Guwahati-781017 

*For correspondence. (tribedi.prosun@gmail.com) 

   
   

   
 

Abstract: Microbial communities are organised, functionally active ecological units that are found widely spread 

in every ecosystem of the planet.  They hold a significant place in most of the ecosystems they reside.  This 

biological assemblage of microbial cells not only help in easy signalling between the microbial network for 

different metabolic activities but also in a way helps in rapid degradation of complex organic compounds into 

simpler inorganic ones.  Stabilisation of the microbial communities is important to maintain a healthy and 

metabolically and functionally active ecosystem. These microbial assemblages are under constant environmental 

stress that results in alterations of its structure and composition which ultimately hampers the stabilisation of the 

microbial community.  Functional diversity of the microbial community with significant functional evenness 

contributes extensively towards stabilisation of a particular microbial community.  The higher the functional 

evenness of a microbial community, the higher will be its stabilization potential.  The functional evenness of a 

particular microbial community is graphically represented by using Pareto-Lorenz curve.  The extent of 

divergence or convergence of the curve from the line of evenness, decides the structure and microbial 

composition of the particular microbial community.  This review focuses on the parameters that alter the 

structure and composition of a microbial community, the significance of stabilization and its measurement by 

the well known Lorenz curve. 
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1. Introduction:  

 

Community refers to potentially interacting species existing in a particular niche or habitat at a particular period 

of time [1].  A community established with the involvement of multi-species microbial assemblages residing in 

a proximate habitat is termed as microbial community.  Microbial assemblages contributing towards a microbial 

community interacts with each other for its proper functioning and metabolic activity.  This interaction or the 

spatial arrangement among the microbial species enables the microbial population in enhancing certain activities 

like DNA exchange, signalling between the species and also for easy degradation of the complex substrates [2].  

In other hand some of the ecologists define community in a far different way.  According to them, community 

refers to a wide, diverse group of microorganisms co-existing in a particular niche with similar physical and 

chemical conditions but without any interaction between them [3].  Communities are highly complex but 

significantly organizational and operational ecological units that exists at a level that neither corresponds to a 

sample that is significantly small enough to be relevant for microorganisms and large enough to be relevant for 

ecosystem processes [1].  In reference to soil microbial ecology, the complexity of the soil microbial community 

can be observed by taking into account the example of a single gram of soil that harbours around 4000 diverse 

genomic microbial cells [4].  Apart from the complex nature of the microbial communities some of the other 

significant characteristics of microbial community like the structure, composition and the significance of a 

microbial community also vary from niches to niches.  In this context, the microbial community residing in 

landfill leachate and that in the normal agricultural soil can be taken into account.  In relation to their functional 

significance, the microbial assemblage contributing towards the microbial community in landfill leachate are 

responsible for the conversion of organic and complex matter into simpler and less toxic ones [5].  Similarly, 

microbial communities residing in the agricultural soil are responsible for regulating the nutrient cycles going on 

in it [6].  These communities in the soil are extensively important not only in maintaining soil quality but also 

on the crop productivity of the particular area [7].  In relation to the composition of a microbial community, the 

microbial species contributing towards an organised community also varies, as for example, the landfill leachate 
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harbours a diverse and a complex group of microorganisms but among them the predominant ones observed 

were Firmicutes, Proteobacteria and Bacteroides.  In addition to these, archael and metagenomic species were 

also recorded.  Thus it can be considered that microbial communities are the house of the rarer of the microbial 

species and also an inexhaustible resource [8] and a stabilization buffer of microbial cells [9].   

 

Soil harbours the most diverse and the most complex microbial communities.  Rich microbial colonization is the 

stepping stone for a series of phenomenon and processes going on in the soil for increasing its quality and 

structure [10].  They perform highly significant functions in the soil that either directly or indirectly affects soil 

quality, its fertility, nutrient cycling and also crop productivity [11].  The structure of a microbial community 

undergoes alterations in response to soil disturbances [12-16] and due to different farming activities like soil 

amendments, irrigation and soil tillage [17-23].  These agricultural management practices have a direct effect on 

soil microbiota [24, 25].  The variation in a microbial community also occurs with the distribution of individual 

plants in a particular niche space.  The microbial communities are the indicators of environmental changes or 

perturbations as these communities responds to environmental changes more rapidly than the other microbial 

communities like the plant communities [26, 27].  In addition to this, dense microbial communities have the 

potential to colonize to the complex freshly exposed substrates available in the environment more rapidly and 

efficiently in comparison with the lichens, vascular and non vascular plants [28-33].  As they are the important 

ecological factors that drives Earth’s biogeochemical cycles [34] any alterations or changes in the microbial 

community will ultimately affect the ecosystem process and results in decrease in ecosystem productivity.  Thus 

soil microbial community can be used as a potential tool for the evaluation of soil quality [35, 36].  There are 

certain studies that demonstrate that plant species inhabiting a particular habitat controls or influences the 

microbial community [37-39] and the ecosystem processes [40, 41] of the particular niche space.  The studies of 

Loreau et al [42] reveal that there is certain underlying mechanism that regulates the alterations of microbial 

community with definite loss of plant species which ultimately hampers the ecosystem functions.  Experimental 

works of Hector et al [43] and Tilman et al [44] indicates that a greater functional richness of plants of a 

particular niche will encourage higher rates of primary productivity as it was already been revealed by the 

studies of Loreau et al [42] that there is certain underlying mechanisms or relationship between plant richness 

and microbial community, so with increase in plant richness there will increase in functional richness of 

microbial cells inhabiting that particular niche.  Each microbial community has a well defined boundary.  The 

boundary of a particular microbial community refers less significantly to the physical dimensions of a 

community rather than the extent over which stronger interactions are prevailing between populations [45].  

Moreover, microbial communities can be divided into local community and phenomenological community.  The 

local microbial community indicates microbial population interacting among each other within a smaller 

environment whereas the phenomenological community takes into account a range of macro scale habitats that 

is it takes into account the patches of local communities [46].  The phenomenological community can be 

constrained down to another subclass referred to as indexical community which indicates a set of population 

interacting directly with the defined population alongwith the local communities which ultimately affects the 

directly interacting populations [46].  Whether local or phenomenological communities, there is constant 

interaction among the microbial species.  The constant and simultaneous interaction between them regulates or 

influences the conditions of the microenvironments which ultimately affect or catalyses the biogeochemical 

transformations [47].  These microorganisms enhance the conversion rates of organic compounds into inorganic 

ones thus enabling the primary producers to enhance the rate of biomass synthesis.  At the same time the others 

involved in the community are responsible for inter-conversion of elements that uphold the interacting species 

and also have great impacts on the geological processes [48]. 

 

The microbial species involved in the community development are either in maximum abundances or are very 

negligible.  But majority of the taxa involved in microbial community development are many of times tending to 

appear in relatively low abundances and only a few tends to occur in high abundances [49, 50].  In this context, 

it is clear indicative of the fact that microbial communities harbours majority of the taxa in low abundances 

which indicates that some of the taxa present in the microbial community as its members are either dormant or 

have least interacting ability and so less impact on the environment [1].  State of dormancy obtained by the 

microbial cells involved in the development of the microbial community mostly because of the different 

environmental stresses that causes the microbial cells to enter the state of dormancy [51, 52].  The microbial 

communities as a cluster are sometimes responsible for shifting of the environmental gradients on time scale 

that cannot be attained by microbes [53].  This is because of the heterotrophic nature of the microbial 

community they are capable of performing diverse function in addition to functioning as electron donors and 

acceptors [54, 55].  It is observed there are high similarities between the bio geographical patterns of microbial 

and microbial communities [56, 57].  But at the same time there are certain parameters that showed differences 
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in their patterns on comparison between the macrobial and microbial communities like the relationships between 

latitude and diversity as well as elevation and diversity [58-60]. 

 

2. Stabilizing microbial community: 

 

Microbial communities are highly complex, significantly organisational and operational ecological units which 

predominate every corner of the planet.  Microbial community network becomes complex depending on the 

surrounding environmental conditions.  The higher the availability of the nutrient content the more complex the 

microbial community [61] whereas in low availability of nutrient content the complexity of the microbial 

community decreases [62].  The pre existing members of a microbial community are at times replaced by the 

newer ones due to implication of different environmental stresses.  The stability, complexity and the 

heterogeneity of a particular microbial community depends mainly on the resilience and resistance of the 

microbial cells against the environmental uncertainty.  In reference to soil microbial community, the array of 

environmental stress or disturbances confronted by the soil microbial community does allow the microbial 

community to stabilize themselves and thereby there are frequent structural changes in the pre-existed soil 

microbial community.  In simpler words, disturbance can be referred to as a biotic or abiotic cause that results in 

the effect of a physiological or functional response of an ecosystem or as causal events that either alter the 

immediate environment or have possible repercussions for a community.  Disturbances might also result in 

complete change or alteration of the structure of a microbial community [63, 64] thus implicating a complete 

shift of a microbial community from one stable state to alternative stable state [65, 66].  In certain cases, 

disturbances can also occur without any change in stable state.  Stability in simpler words refers to the ability of 

maintaining a balance of the ecological stress conditions.  Stability generally refers upon stable state and 

alternative stable state.  Stable state refers to a condition where a community returns to its original composition 

or function following a disturbance.  Alternative stable state refers to a condition where a community moves to a 

different but stable composition or function following a disturbance [67].  Stability of a particular ecosystem 

comprises of two significant matrices that are highly functional for comparing of disturbance responses of 

microbial communities residing in the particular ecosystem [68].  The property of resistance and resilience plays 

a significant role in rendering stability to a microbial community.  Resistance and resilience are generally 

assessed based on the microbial community composition and function [68, 69] where resistance merely mean 

the capability of  withstanding high degree of environmental stress and shows high degree of flexibility and 

physiological tolerance to different environmental stress by the microbial cells [70] whereas resilience refers to 

the capability of a microbial community to revert back to its predisturbance state after the period of perturbation 

[68].  In relation to this, there is another parameter that is closely associated with microbial community stability 

residing in a particular ecosystem, is adaptation.  Most of the microbial communities inhabiting a particular 

niche posses the capability of resisting the compositional change at the time of disturbances only if the microbial 

community is complex and contains versatile physiologies [71].  There are studies that reveal that microbial 

communities’ uses alternate options for withstanding the incoming environmental stress, either they start 

expressing a range of metabolic capabilities [70, 72] through gene expression.  Existing literature indicates that 

a mixotrophic microbial community shows greater survival rates in fluctuating environment because of their 

ability to use alternate and diverse sources of carbon for generation of energy [73].  Studies and experiments 

carried out by Fenchel and Finlay [58] and Meyer [70] is indicative of the fact that there are certain specific 

traits of microbial communities and the member involved in the formation of it are responsible for rendering 

resistance or resilience to the particular microbial community.  These traits include potential growth rates of the 

community members, high abundances and their widespread dispersal.  The studies carried out by Allison and 

Martiny [68] explains the impact of disturbances on different existing microbial communities.  In case the 

microbial community is resistant and does not change by the stress imposed upon by the environment, the pre-

disturbance state of the microbial community is negligible.  On other hand, if the particular microbial 

community is sensitive but resilient than the metabolic activity and other parameters occurring in the 

environment pre-distubance will regains its original state.  Unlike to the previous situation, if a community is 

sensitive and not resilient, due to high redundancy of microbial species, the respective microbial community will 

produce the same process rates as that of the original.  There are existing literatures that shows that even 

diversity of a microbial community plays an important role in confronting environmental stresses.  The studies 

demonstrated by Allison [74], Downing and Leibold [75], Van Ruijven and Berendse [76] showed that the 

higher the richness and evenness of a particular microbial community, the higher is the resilience of the 

microbial community.  The existing literature reports the recovery rates of the pre-existing microbiota of the 

amended as well unamended soil after severe drought condition [77].  The water stress experienced by the 

microbiota of the particular ecosystem was evaluated by taking into account physiochemical, chemical, 

biological and the biochemical parameters such as microbial biomass carbon [78], basal respiration and ATP or 
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eco physiological quotients [79], as well as specific biochemical properties such as hydrolytic soil enzymes 

related to C, N and P cycles [80,81].  Fernandez et al [82] tried defining microbial community stability by using 

a broad spectrum of definitions and the definitions encompasses two components- functional properties of the 

ecosystem and the change over time of the community composition.  Finally Fernandez et al [82] and Juliastuti 

[83] concluded after long term experiments the ecosystem functional stability of a microbial community 

depends mainly on the complexity of microbial communities.  Wittebolle et al [84] based on his microcosm 

based experiment explained the role of initial evenness of a microbial community on its functional stability.  

After long term experiments it was found that high initial evenness was important for attaining stability of the 

desired microbial community.  One significant study carried out by van Elsas et al [85] indicated the impact of 

diversity on stability by constructing synthetic combinations of soil isolates rather than considering the normal 

pre-existed microflora and he concluded with a significant correlation between species richness of the microbial 

community with its resistance to invasion by an E.coli strain.  Initially Griffith et al [86] tried to tease apart the 

relations set between microbial diversity and functional stability but finally Griffith et al, after long term 

experimenting works using high intensities of soil fumigation following a disturbance concluded that though 

there was no affect on the microbial production with the decrease in microbial diversity but there was significant 

decrease in some of the important ecosystem processes.  So it was concluded that lower the microbial diversity, 

lower the resistance of the microbial community.  Velasco et al [87], in his experimental studies indicated 

another parameter for the stability of the microbial community with high resistance and resilience is the extent 

of adaptation the community members to the incoming stress. 

 

3. Lorenz curve: 

 

Lorenz curve is a parameter that relates to the functional organisation of a particular microbial community 

residing at a particular niche space.  The organisation of a particular microbial community in a definite 

ecosystem or niche depends on its response against the ongoing ecological-microbial interactions of the desired 

niche space.  Previous studies on long term existence of a microbial functional organisation in a particular 

ecosystem was found mainly due to the dominance of the particular microbial community towards the 

ecological niche space and ongoing ecological process [88].  Lorenz curve can be in simpler words referred to as 

the graphical representation of the growth and distribution pattern of a particular microbial community in a 

definite niche space, which is also referred to as Pareto-Lorenz evenness curve [89].  It was first developed by 

an American economist Max Lorenz in 1905.  In other words, it can be said that Pareto-Lorenz curve 

graphically represents the evenness of a microbial community inhabiting a particular niche space.  These curves 

were based on the number of bands and band intensities of the DGGE profiles as described by Mertens et al 

[90].  Functional evenness of a microbial community is significant in gathering information regarding the 

distribution pattern of a microbial organisation.  Functional evenness is a parameter used to measure the degree 

of species trait distributed regularly or evenly within the occupied the trait space which allows effective 

utilization of the entire range of resources available in the niche space [91]. 

 

These distribution curves are normally plotted to check the cumulative relative abundance of a particular species 

contributing towards development of microbial community [92].  The straight diagonal line on the graph 

represents perfect equality of the microbial distribution residing in a particular niche space and it is referred to 

as perfect evenness line that is 45˚ diagonal.  The difference between the straight line and the curve line 

represents the extent of inequality of evenness of the microbial community.  The cumulative proportions of the 

microbial species were plotted on the X-axis and the cumulative proportions of their intensities were plotted on 

the Y-axis of the graph.  The graph that is obtained generally in this context is a convex curve.  The more the 

Lorenz curve deviates from the line of evenness, the lesser is the evenness of the microbial community 

concerned.  Lower evenness of a microbial community indicates that members of the microbial community are 

less evenly organised and a very small fraction of the microbial species is present in dominant numbers [93]. 

 

4. Conclusion: 

 

Microbial community is a microbial network involving wide array of microorganisms controlling some of the 

significant environmental processes like nutrient cycling, degradation of complex organic substances into 

simpler inorganic substances, promoting plant growth by enhancing soil fertility and many more.  This complex 

association of microorganisms are under continuous environmental stress that hampers the stability of these 

communities.  Stabilization of any microbial community is of high significance to be metabolically and 

functionally active and so it is of great importance to check for the stability of a desired microbial community.  

Microbial stability of a heterogeneous microbial association can be achieved only if there is high functional 
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evenness in the community.  The functional evenness of a microbial community can be determined by 

graphically representing with the help of Lorenz evenness curve.  More the curve deviates from the line of 

evenness, more uneven is the microbial community and vice versa.  So, it can be said that by using the Pareto 

Lorenz curve the functional evenness of microbial community residing within the human body can be estimated 

which will help in knowing the approximate dosage of drug required in destroying the pathogenic microflora 

without affecting the normal microflora of the body during a particular disease condition.  In the same way it 

will help in knowing about the microbial community residing in the soil that will not only benefit the crop yield 

but the soil quality. 
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