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Abstract: In [8, Chap. 18, Thm. 5], Rosen and Ireland express the number of 𝔽p points on the 

family of elliptic curves y
2
 = x

3
 - ax in terms of Jacobi sums using properties of character 

sums. In this paper we give an alternative proof of this result using Gaussian hypergeometric series 

and extend it to 𝔽q. Further if a is a quadratic residue in 𝔽q, then we find a similar results using 

another technique. 
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1. Introduction and statement of results: 

 

Finding number of solutions of a polynomial equation over a finite field is a problem of interest to 

mathematicians for many years. Many mathematicians have found many interesting connections of 

different parameters of algebraic curves and other mathematical objects like characters, modular 

forms, hypergeometric functions. 

 

Gauss introduced 2F1 classical hypergeometric series. For a complex number a and a non-negative 

integer n, let (a)n denote the rising factorial defined by 

 (a)0 := 1 and (a)n := a(a + 1)(a + 2) · · · (a + n - 1) for n > 0. 

Then, for complex numbers ai , bj , and z, with none of the bj being negative integer or zero, the 

classical hypergeometric series is defined by 

 
The relations of classical hypergeometric series with number of points on algebraic curves have 

been investigated by many mathematicians. The period of an elliptic curve has close association 

with classical hypergeometric series. For details, see [13, 15, 5, 12, 1]. 

 

In 1980’s, Greene [6] defined Gaussian hypergeometric function, which is finite field analogue of 

classical hypergeometric series. Let q = p
e
 be a power of an odd prime and 𝔽q the finite field of q 

elements. Let 𝔽 
 ̂ denote the group of multiplicative characters χ on 𝔽 

 , extended to all of 𝔽q by 

setting χ(0) := 0. For A, B ∈ 𝔽 
 , the binomial coefficient ( 

 
) is defined by 

                                  (1) 

where J (A, B) denotes the usual Jacobi sum and  ̅ is the inverse of B. With this notation, for 

characters A0, A1, . . . , An and B1, B2, . . . , Bn of 𝔽q, the Gaussian hypergeometric series 

over 𝔽q is defined as   

 

           (2) 
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where the sum is over all characters χ of 𝔽q. Gaussian hypergeometric series possess many 

interesting properties analogous to the classical hypergeometric series. This encourages 

mathematicians to find connection of certain parameters of algebraic curves with Gaussian 

hypergeometric function. Recently, Koike [9], Ono [14], Fuselier [7], Lennon [10, 11], Barman 

and the author [2, 3], and many more have deduced expressions of traces of Frobenius of certain 

families of elliptic curves in terms of special values of Gaussian hypergeometric functions.  

 

For a ∈ 𝔽 
  we consider the elliptic curve Ea defined by the affine equation 

E : y
2
 = x

3
 - ax 

If we denote by aq(Ea ) the trace of the Frobenius endomorphism on Ea ,then 

                                                              (3) 

where #Ea(𝔽q) denotes the number of 𝔽q -points on Ea including the point at infinity. Clearly the curve E 

has one point at infinity so that #Ea(𝔽q) = 1+N (y
2
 = x

3
-ax). In [8], Rosen and Ireland deduced the 

following result regarding the number of 𝔽q-points on Ea . 

 

Theorem 1.1. [8, Chap. 18, Thm. 5] Suppose p ≠ 2 and p a. Consider the elliptic curve y
2
 = x

3
 

- ax over 𝔽q. If p ≡ 3 (mod 4) then #Ea(𝔽q) = p + 1. If p ≡ 1 (mod 4), then 

 
where χ4 is a character of order 4 on 𝔽q. 

 

They use properties of characters to count the number of different order residues present in 𝔽q 

together with a transformation of the elliptic curve to deduce the result. Here we give an alternative 

proof of the above theorem and extend the above result to 𝔽q.  

 

Theorem 1.2. Let q = p
e
, p > 0 a prime number with q ≡ 1 (mod 4). For the elliptic curve 

Ea : y
2
 = x

3
 - ax, 

the trace of Frobenius is given by 

aq(Ea) = -2Re {χ
3
(-a)J (χ4, χ4)}, 

where χ4 is a character of order 4 on 𝔽q. 

Further we proof the following theorem. 

 

Theorem 1.3. Let q = p
e
, p > 0 a prime number and a is a quadratic residue in 𝔽 

 . Then the trace 

of Frobenius of the elliptic curve 

Ea : y
2
 = x

3
 – ax 

is given by 

 
 

2. Preliminaries: 

 

In this section, we recall some basic terminologies and properties of characters as well as Gaussian 

hypergeometric function. We begin with the definition of additive character. The additive character 

θ : 𝔽q → ℂ×
 is defined by 

θ(α) = ζ
tr(α) 

where ζ = e
2πi/q

 and tr : 𝔽q → 𝔽q is the trace map given by  

                    
                

 

For A ∈ 𝔽 
 ̂, the Gauss sum is defined by  

 
We let T denote a fixed generator of 𝔽 

 ̂. We also denote by Gm the Gauss sum G(T
m
). The 

orthogonality relations for multiplicative characters are listed in the following 

lemma. 
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Lemma 2.1. [8, Chap. 8] Let   be the trivial character. Then  

 
Using orthogonality, we have the following lemma. 

 

Lemma 2.2. [7, Lemma 2.2] For all α ∈ 𝔽 
 , 

 
The following lemma gives a relation between Jacobi sum and Gauss sum. 

 

Lemma 2.3. [7, Lemma 2.6] If T
m-n 

≠ ϵ, then 

 
Finally, we restate a results from [6]. 

 

Lemma 2.4. [6, (4.11)] 

 
 

3. Proof of the results:  

 

Proof of Theorem 1.2 : Let Ea(𝔽q) denotes the 𝔽q  -points on the elliptic curve Ea 

including the point at infinity. Then 

 
where, 

P (x, y) = y
2
 - x

3
 + ax. 

Using the identity from [8] 

 
We express the number of points as  

         (4) 

Now using Lemma 2.2 and Lemma 2.1 repeatedly for each term of (4), we deduce that 

 
Expanding the next term, we obtain 

 
Finally, the last term yields 
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The innermost sum is zero unless l = 0 or 
   

 
 . For these two values of l, the term reduces to 

            

 
 
, 

where 

 
Now, C q-1 is nonzero for n = -3m and m = (q-1)/4 or 3(q-1)/4. Using this and then Lemma 

2.3, we obtain 

.     ( 5 )  

 

The last equality follows from the fact that     

 

 √  for q   1 (mod 4). Finally, combining all values 

of A, B and C in (4), we have 

 
From the relation aq(Ea) = 1 + q - #Ea(𝔽q ), the proof follows. 

 

Let p be a prime such that p ≡ 1 (mod 4) and g be a primitive root modulo p. Then there exist non 

negative integers c, d such that c
2
 + d

2
 = p with c ≡ -φ(2) (mod 4) and              (mod p). 

Hence values of Table 3.2.1 of [4, Chap. 3, pp. 108] yield the following corollary. 

 

Corollary 3.1. Let p be a prime number such that p ≡ 1 (mod 4). If a is quadratic residue in 𝔽 
 , 

then the trace of Frobenius for the elliptic curve 

Ea : y
2
 = x

3
 - ax 

is given by 

aq(Ea) = -2cχ4
3
(a), 

where c, d are non negative integers such that c
2
 + d

2
 = p with c ≡ -φ(2) (mod 4) and   

            (mod p) with g being a primitive root in modulo p. 

 

Proof of Theorem 1.3 : Since a ∈ 𝔽 
  is a quadratic residue, let a = α

2
. By definition, the 

trace of Frobenius for the elliptic curve Ea is given by  

                                    (6) 

 

Again we have,  

 
Replacing x by    , we obtain 
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Using (6) and Lemma 2.4, we have 

                                           (7) 

 

The fact 

 
yields that  

 
Using this in (7), we complete the proof.  
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