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Abstract:: Theoretical study on hypernuclear systems is important to know the nature of hyperon-nucleon and 

hyperon-hyperon interaction as only hypernuclear systems give the scope of knowing these interactions. A 

hypernucleus, in addition to the nucleons contains at least one hyperon which is a strange particle composed of 

quarks. A hypernucleus is produced mostly in heavy ion collisions and it undergoes weak decay. Experimental 

detection of hypernuclear events are rare and this makes the study of hypernuclear physics more challenging. 

Hypernuclear physics has a close association with astrophysics as hyperon-nucleon and hyperon-hyperon 

interactions are found to play important role in the interiors of neutron stars. The core of neutron stars contains 

strange quark matter and therefore, study of  hyperon involved potentials are essential for the determination of 

the composition of neutron star matter. But, there is a scarcity of data from hyperon-nucleon scattering 

experiments. Also, since it is  impossibe to have hyperon-hyperon scattering experiments, the direct 

determination of the baryon-baryon interaction strength is extremely difficult. Therefore theoretical models play 

important role in unfolding the mysteries of hyperon-nucleon and hyperon-hyperon interaction. In this study, 

binding energies of hypernuclear systems calculated using different two-body lambda-nucleon and three-body  

lambda-nucleon-nucleon  interactions  have been analysed. Also effect of lambda-lambda potential on the 

binding energy of  hypernuclear system have been analysed. In this few-body study, we have employed  

Variational Monte Carlo technique  for calculation of the binding energies of different hyperclear systems. 
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1. Introduction: 

 

A hypernucleus, in addition to the nucleons contains at least one hyperon which is a strange particle. 

Hypernucleus is produced  mostly in heavy ion collisions and it undergoes weak decay. In general, a single and 

a double lambda hypernucleus is represented by,         and         where ‘Z’ and  ‘A’ denote respectively the 

atomic number and  mass number of the parent atom.  A lambda hypernucleus has one or more lambda particle 

occupying the same quantum state occupied already by the nucleons. The strange hyperon ‘Λ’ has a lifetime of  
1010 s and therefore a hypernucleus decays very rapidly. This makes experimental detection of hypernuclear 

events very  rare and therefore the study of hypernuclear physics is very challenging. Study of hyperceus is 

important mainly for the following reasons, to  understand the nature of hyperon-nucleon and hyperon-hyperon 

interactions, to understand baryon-baryon interaction in general, enriching our knowledge about role of 

strangeness in a nuclear medium of different densities in physical observables starting from deuteron to neutron 

stars etc. Study of  hyperon involved potentials are essential for the determination of the composition and 

properties of neutron star matter (eg. Cooling rate of neutron stars, mass-radii relations etc.), as hyperons are 

present in the cores of neutron stars. Since the first report of hypernuclear event by M. Danysz and J. 

Pniewski[1] in 1953, lots of theoretical as well as experimental work has been done. 

 

Earlier we have performed variational Monte-Carlo studies on different hypernuclear systems with different 

potential models to study the effect of  parameters of the potential models on the binding energy of  the  

hypernuclear systems [2,3,4]. In the present study we revisit the  hypernuclear system             with the potential 

model ΛN4 of ref[8]. We discuss the role of ΛNN interaction parameters on the stability of the double 

hypernuclear system           . From the study we find that the stability of the hypernuclear system depends on the 

three-body ΛNN potential crucially.  
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2. Potentials and wavefunction: 

 

NN and NNN potential : 

 

For the nuclear part of the Hamiltonian, we use ArgonneV18  NN[6] and Urbana IX NNN[7] potentials .  

 

ΛN  and ΛNN potential : 

 

We use phenomenological potential consisting of central, Majorana space-exchange and spin-spin ΛN 

components for ΛN potential[5], and  it is given by, 

NxcN rTVPrTVrVV     )(
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Here Px is the majorana space-exchange operator and ɛ is the space exchange parameter which is taken as 

0.2[8]. Vc(r),  V  and Vσ  are respectively Wood-saxon core, spin-average and spin-dependent strength and 

)(2 rT
 is one-pion tensor shape factor. 

 

In the  ΛNN potential, there are two terms, a two-pion exchange part and a dispersive part[5]. The two-pion 

exchange part of the interaction is given by  
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The dispersive part of the ΛNN potential is given by, 
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Here Yπ(rkΛ) and Tπ(rkΛ) are the usual Yukawa and tensor functions with pion mass, μ = 0.7 fm
-1

.
 
; Cp  and  W0  are 

ΛNN interaction parameters. 

 

We revisit the hypernuclear system            using the  potential model given in Table 1.The values of the  ɅN and 

ɅNN interaction parameters, viz. Ɛ, Cp & W0   selected with the criterion of giving bound state for         .           

For the potential model ΛN4, the spin-average and spin-dependent strength of the ɅN potential are kept same 

with spin-average strength  V = 6.150 Mev and spin-dependent strength Vσ = 0.176 Mev, same as in ɅN1[2,3]. 

The values of the interaction parameter of our earlier potential model  ΛN1[2,3]  are listed in Table 2. The ΛN 

and ΛNN potential parameters for our preferred model denoted by  ΛN4 [8]are listed in Table1. Cp and W0 are 

the strength parameters of the two-pion and dispersive parts of the ΛNN potential. The values of the three body 

ΛNN interaction parameters have been reduced in this preferred potential model  ΛN4.                       

 

Table 1:  ΛN and ΛNN interaction parameters for ΛN4. Except for ɛ, all other   quantities are in   MeV. 

ΛN        V                 Vσ                        ɛ                   Cp                   W0 

 

      ΛN4      6.150           0.176             0.2                0.7              0.012 

 

 

Table 2:  ΛN and ΛNN interaction parameters for ɅN1. Except for ɛ, all other   quantities are in   MeV. 

ΛN        V                 Vσ                        ɛ                   Cp                   W0 

 

      ΛN1      6.150           0.176             0.2                0.15              0.028 
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ΛΛ potential :  

 

For  ΛΛ potential, we use low-energy phase equivalent Nijmegen interactions represented by a sum of the three 

Gaussians[9,10,11], 
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Here the strength parameters  v
i 
and the range parameters  βi are, 

          Sl. No.                            )( fmi                             )(Mevv i
 

            

            1                                     1.342                                     -21.49 

 

                  2                                     0.777                                   -379.10 

 

            3                                     0.350                                   9324.00 

 

 

The variational wave function is represented by, 
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Here, |Ψp   is the pair wave function[2,3] given by 
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The Jastrow wave function for lambda hypernuclei is given by, 
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Here f’ s are  the central correlation functions and  ǀφ>  is an antisymmetric wave function of the  lambda 

particle. JT   is the spin and isospin wavefuntion of the s-shell nucleus.  

 

3.  Variational Monte Carlo technique: 

 
Variational Monte Carlo method is used to find the ground state energy and binding energy of different 

hypernuclear systems. This technique is based on variational principle and is used to find ground state energy of 

a system by varying the different parameters variationally. 

 

Variational principle states that, the approximate value of a Hamiltonian, calculated using trial wave-function is 

never lower in value than the true ground state energy 

                                                                                                                                                                                

                                                                                                                                                            (7) 

where E0 is the true ground state energy of the system. 

 

To find the true ground state energy , a suitably parametrized trial wave function is selected which is a function 

of position, spin, isospin and other intrinsic variables and parameters. This trial wave function is used to find the 

upper bound to the energy using metropolis algorithm. The minimum energy is searched by calculating energy 

differences for wave functions using configurations generated by random walk. Energy expectation values are 

calculated by varying variational parameters one or two at a time.  The minimum energy so obtained  is taken as 

the  true ground state energy of the system. 
                                                                                                      

 

 

The binding energy (BΛ ) formulae for single and double hypernuclear system are given by,                                                                                                                                                                           
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.
4. Results and discussion: 

 

The binding energy results for the hypernuclear systems           with the potential model ɅN4 are tabulated in 

Table 3. We have also presented the results for         the two potentials. We have compared the present result 

with experimental value and our earlier result on           with the potential model ɅN1 [Ref. 3]. 

  

Table3:  Binding energy ( B
 
 and   B  ) results for           and             .  All quantities are in   MeV.  

 

The potential model ɅN4 contains both space exchange part of  ɅN potential and  non zero values  of the 

parameters Cp  & W0   of ɅNN potential but with reduced values. The binding energy for            is found to be 

very small, 0.08(01)  with this potential model.  Therefore higher values of these two parameres give more 

stable          .                                                                     

 

5. Conclusions:  

 

The results show that the decreased values of ΛNN interaction parameters reduces the calculated binding 

energy. Thus, in addition to the two-body ΛN interaction parameters and ΛΛ interaction parameters, the three-

body ΛNN interaction parameters are important for bound state of            .  
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