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Abstract: Visible light responsive Ni/Ti layered double hydroxide (LDH) was synthesized by a single step 

hydrothermal route using commercially available Ni(NO3)2.6H2O, TiCl4 and urea which exhibited significant 

UV-visible absorption with a much narrower band gap (2.69 eV) that contributed significantly to the 

degradation of methylene blue under visible light. X-ray diffraction, Fourier transformed infrared spectroscopy 

(FT-IR) and N2 adsorption at 77 K were also carried out to investigate the structure and surface area of the 

sample. The photocatalytic degradation of aqueous methylene blue (MB) was observed due to the narrow band 

gap accompanied by comparatively high surface area. The photocatalytic activity improved in alkaline media 

particularly at pH 11 (catalyst dose 0.075 gL
-1

, 1 x 10
-6

 M MB). The catalytic activity was found to be higher 

than commercial catalysts like ZnO, ZnS, TiO2 and Degussa P25. Thus, this work demonstrated significantly 

photocatalytic properties of the Ni/Ti LDH in the field of environmental wastewater treatment. 
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1. Introduction:  

 

Layered double hydroxides (LDHs), a class of anionic clays, have attracted considerable interest mainly because 

of their unique structure with variable metal cations in layer constituents as well as different exchangeable 

anions in galleries. They are widely used as polymer fillers and novel materials with magnetic,
 
catalytic

 
and 

photochemical functions. The variability of layered hydroxides arises from the combination of the inorganic 

hydroxide layers with the properties contributed by the host anions intercalated between these layers. Ultrathin 

nanosheets, prepared by delamination of layered hydroxides, have attracted attention due to the extremely small 

thickness of the order of 1 nm and large lateral size of the order of micrometers. Comparatively easy 

preparation, stability in air, interchangeable anions and incorporable host layers has made LDH an excellent 

precursor to develop novel photo functional materials. The general formula of these compounds is 

[M
II

1−xM
III

x(OH)2](A
n−

)x/n·yH2O, where M
II
 and M

III
 represent divalent and trivalent cations, respectively and 

A
n−

 is the charge balancing anion. The surface charge can be tuned by varying the ratio of M
II
/M

III
 and could be 

compensated by interlayer anions and water molecules [1-3]. The structural characteristics and compositional 

variability of the LDHs have potential applications in areas such as catalysts, catalyst supports and 

nanocomposites.  

 

Ti containing LDHs have received much attention for their potential application in removal of toxic anionic 

substances from industrial wastewater. Methylene blue finds its uses in a range of different fields of chemistry 

such as printing, textile, and photographic industries. The dye is also known to cause irritation of the skin, eyes 

and the respiratory tract [3]. It is therefore important to eliminate these dyes from wastewater so that they do not 

foul natural water resources.  

 

In the present work, the decolorization efficiency of the Ni/Ti LDH is evaluated by using methylene blue (MB), 

a model water-soluble dye which is widely used in chemical and textile industry. Thus, Ni/Ti LDH reported in 

the present work has proved itself to be an excellent candidate for removal of dye from water.  

 

2. Experimental section: 

 

2.1. Materials:  

                                

All the chemicals were of analytical grade and were used without further purification. Ni(NO3)2.6H2O, TiCl4, 
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urea, ZnO, ZnS, Degussa P25 and methylene blue were purchased from Merck Chemicals Co. Ltd. USA. 

Deionized water (conductivity < 0.15 mS cm
-1

) was used throughout the experiments. 

 

2.2. Catalyst synthesis: 

 

Ni(NO3)2.6H2O, TiCl4 as well as urea were used to prepare a hydrotalcite-like material by a co-precipitation 

method from homogenous solution. In a typical synthesis, 11.2 g of Ni(NO3)2.6H2O, 1.1 ml TiCl4 and 1.0 g urea 

were dissolved in 100 ml of deionised water  at room temperature (~30 
0
C) and stirred vigorously for 2 h. The 

resulting mixture was aged in a Teflon lined autoclave at 80 
0
C for 4 h. The green crystalline product so 

obtained was centrifuged, washed three times with water and dried.  

 

2.3. Preparation of Methylene Blue solution: 

 

Methylene blue (MB) dye (Figure 1) used in the photodegradation experiments was prepared by dissolving an 

accurately weighed amount in distilled water to a concentration of 1x10
-4 

M (stock solution). The dye solutions 

of 1x10
-5 

M and 1x10
-6 

M were made by diluting the stock solution with appropriate amount of distilled water 

before the degradation experiments. 

 

 
Figure 1: Structure of Methylene Blue. 

 

2.4. Characterization techniques: 

 

Powder X-ray diffraction (XRD) patterns were obtained with a PANalytical X'Pert PRO diffractometer that 

allowed both reflection and transmission experiments on the same sample. The XRD patterns were recorded 

between 5 and 80
0
 (2θ) with a step size of 0.013

0
 and an acquisition time of 30 s per step. Fourier Transform 

Infrared spectroscopy (FT-IR) measurements were recorded with a Shimadzu FT-IR 3000 spectrometer 

(resolution 4 cm
-1

), the sample was pressed into KBr disc with a weight ratio of sample to KBr of 1:100. The 

specific surface area, pore volume and pore size analyses were done with a Micromeritics TriStar 3000 V6.08 

analyzer following Brunauer–Emmett–Teller (BET) and Barret–Joyner–Halender (BJH) methods. Prior to the 

measurements, the samples were degassed at 120 
0
C for 3h. The solid UV–vis diffuse reflectance spectrum was 

recorded at room temperature with Hitachi U 4100 spectrometer using BaSO4 background. The absorption 

spectra in the photodegradation experiments were monitored by using a Shimadzu 1800 UV-Visible 

spectrometer. 

 

2.5. Photocatalytic reactions: 

 

The photocatalytic reactor consisted of a stainless steel chamber fitted with a 300 W tungsten lamp (Philips 

38941-1; PS 25, Frost-6100) as the visible-light source, equipped with a wavelength pass filter (λ > 400 nm) at 

the bottom. The degredation experiments were performed with aqueous methylene blue (MB) at 30 
0
C under 

vigorous stirring with a magnetic stirrer, taken in a double walled beaker with continuous circulation of running 

water separately through the outer jacket to ensure constant temperature of the reaction mixture. In all the 

degradation experiments, 150 ml of the reactants were vigorously stirred for 30 min in the dark to establish an 

adsorption/desorption equilibrium between the catalyst and the dye, followed by exposure to visible-light 

irradiation. 10 ml aliquots were sampled for analysis at 15 min intervals, centrifuged to remove solid catalyst 

particles and the centrifugate was analyzed for the unconverted dye using a Shimadzu UV-1800 

spectrophotometer at λmax of 664 nm. Reaction blank was carried out with the same procedure without adding 

catalyst. Moreover, the control reaction was also carried out in the dark with the catalyst for 75 min in order to 

evaluate its effect on the degradation process of MB. The effect of pH on the photocatalytic degradation was 

investigated by altering the pH value by 1 unit from pH 5 to 11. The pH values were adjusted by addition of 

hydrochloric acid or sodium hydroxide (0.1 M). The pH values were measured with a Systronics Digital pH 

meter (model 335, Systronics Analytical Instruments, India) and absorbances of the pH-adjusted solutions 

before and after the degradation process were measured in the manner described above. The effect of catalyst 

dose on degradation was investigated separately with 0.025, 0.05, 0.075, 0.1 gL
-1

 of catalyst  dose at pH 11 with 
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1 x 10
-6

 M MB solution. In order to evaluate the effect of dye concentration, the photocatalytic reactions were 

also performed with 1 x 10
-4

, 1 x 10
-5

 and 1 x 10
-6

 M MB solutions over 0.075 gL
-1

 of the catalyst at pH 11. A 

comparative photodegradation study was also performed using 0.075 gL
-1 

of commercially available pure ZnO, 

ZnS, TiO2 and Degussa P25 as reference samples with 1 x 10
-6 

M MB. 

 

3. Results and discussion: 

 

3.1. X-ray diffraction analysis: 

 

The LDH was characterized by powder X-ray diffraction (Figure 2) that  revealed a typical layered structure 

similar to those previously reported in the literature for LDH-like materials [3-5]. In the present work, the 

diffraction peaks are in good agreement with the characteristic hexagonal phase of LDH. The (003), (006), (009) 

and (100)  peaks appeared at 13.32
0
, 23.51

0
, 38.34

0
 and 31.62

0 
(2θ) respectively. The basal spacing 

corresponding to d(003) was found to be 0.763 nm (2θ ≈ 13.32
0
) and that of d(110) is 0.153 nm (2θ ≈ 27.12

0
). Since 

Ni/Ti LDH has been found to have the same basal spacing as in the normal LDHs, it is likely that the planar 

orientation of anions, mainly CO3
2-

, and H2O molecules in the interlayer space has remained almost in a similar 

pattern in the LDH prepared in this work.
 
The addition of TiCl4 in the aqueous media at room temperature 

during catalyst synthesis has generated TiO2 and is evident from the diffraction peaks in the XRD profile of the 

layered material. The diffraction peaks (110) and (101) at 2θ values of 28.21
0
 and 35.81

0
 in the LDH indicates 

the presence of TiO2 in the anatase phase as impurity, which is found to be in accordance with previous results. 

The XRD pattern also showed peaks at (0111), (018), (113) and (1013) which could be indexed to typical LDH 

materials. The narrow and sharp diffraction peaks indicate that the LDH material possesses good crystallinity. 

The contraction in the interlayer distance of Ni/Ti LDH is possibly related to strong electrostatic interactions 

between the host layer and the guest carbonate species in the presence of Ti.  

 

 
Figure 2: Powder X-ray diffraction of Ni/Ti LDH. 

 

3.2. FT-IR analysis: 

 

The FT-IR spectrum recorded at room temperature showed the characteristic frequencies associated with the 

layered structure of the LDH materials (Figure 3). All the key bands resemble those exhibited by hydrotalcite-

like phase with CO3
2-

 as counter anion. An intense broad strong absorption band centered at 3451 cm
−1

 is 

attributed to the stretching vibrations of surface and interlayer water molecules and hydroxyl groups usually 

observed at lower frequency in the LDH rather than in the -OH stretching vibration in free water at 3600 cm
−1

. 

This is related to the formation of hydrogen bonds of interlayer water with guest anions as well as with 

hydroxide groups of layers [4] The broad band at 3141 cm
-1

 accompanied by a shoulder at near at 3023 cm
-1

 can 

be assigned to the hydrogen bonding between water and carbonate in the interlayer. The band at 1610 cm
−1

 is 

assigned to the bending vibration of water molecules. In most of hydrotalcites, there are three IR active 

absorption bands arising from the carbonate anion observed at 1385 cm
−1

(υ3), 1058 cm
-1 

(υ1) and 745 cm
-1

 (υ2). 

The bands at approximately 998 and 837 cm
−1

 are attributed to stretching modes that confirm the presence of 

NO3
−
 groups as impurity in the LDH interlayer with D3h symmetry [5]. The sharp band at 828 cm

-1
 is associated 

with in-plane quadrant bending. Another peak at 1110 cm
-1

 is associated with C-O single bond stretching 
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vibrations. The band at approximately 745 cm
−1

 is attributed υ2 mode of the CO3
2-

 species [3, 5]. The presence of 

all these bands, combined with XRD results, confirms that the materials have been successfully transformed into 

LDH via hydrothermal route. 

 

3.3. N2 sorption/desorption measurements: 

 

In order to have an insight into the specific surface area and porosity of the LDH, low temperature N2-sorption-

desorption measurement was carried out (Figure 4). The BET isotherm belonged to Type IV with H3-type of 

hysteresis loop (p/p0 > 0.4 to ~ 0.8). The considerably large hysteresis loop shows the condensation of N2 inside 

the pores and their release following reduction in pressure follow different paths, a characteristic of mesoporous 

structure of the material [4]. The Ni/Ti LDH thus consists of uniform mesopores formed through accumulation 

of particles. A broad pore size distribution is observed for the LDH sample with an average pore width of 5.13 

nm [Figure 4 (inset plot)], which is likely to have been originated due to use of urea as template during the 

hydrothermal treatment. The BET specific surface area of 232 m
2
g

−1
 for the LDH could be considered as quite 

high due to which higher photocatalytic efficiency was observed. The BJH adsorption and desorption 

cumulative pore volume was 0.234 and 0.218 cm
3
g

-1
 respectively. The pore size distribution in the synthesized 

LDH is dominated by both micropores and mesopores in the diameter range of 0 – 10 nm. The mesoporous 

nature of the material with an appropriate spatial arrangement is likely to assist the electron/hole transfer within 

the framework and therefore, likely to be photo catalytically active.  

 

 
Figure 3: FT-IR spectrum of Ni/Ti LDH. 

 

 
Figure 4: N2 sorption/desorption isotherm of Ni/Ti LDH. 

3.4. Optical properties: 

 

3.4.1. Solid UV-vis DRS analysis: 

                            

The diffuse reflectance UV–vis analysis (Figure 5) was carried out to investigate the nature and coordination 

state of nickel and titanium incorporated in the layered framework. Two types of bands were identified:- ligand-

to-metal charge-transfer (LMCT) band in the 200-350 nm range and d−d transition band from around 600-800 

nm. Band assignments for the UV−vis spectra of Ni/Ti LDH reveals two bands in the 200-350 nm range, the 
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first centered at ~ 235 nm and the second centered at ~310 nm. The band at 235 nm could be assigned to an 

LMCT from O in OH
−
 to an isolated Ni

2+
 in octahedral coordination. This Ni

2+
 is expected to be present in the 

brucite-like layers of LDH containing highly dispersed (isolated) Ni
2+ 

[2, 3]. The band at ~310 nm can be 

assigned to an LMCT from O in OH
-
 to Ni

2+
 in octahedral coordination corresponding to Ni−O(H)−Ni type of 

bonding. Besides this, a broad absorption band with maxima at ~550 nm that indicates the presence of Ti
4+

 in 

the brucite like sheets [4]. The broad nature of absorption at ~550 nm could  also be ascribed to supramolecular 

guest–guest (hydrogen bonding and van der Waals forces) or guest–host interactions (electrostatic attraction, 

hydrogen bonding and van der Waals forces). Meanwhile, a shoulder in the region 620-750 nm could be 

assigned to d−d transitions in Ni
2+

 in a distorted (Jahn−Teller effect) octahedral structure. In case of the layered 

hybrid materials, the UV spectrum shows an overall broadening and a red shift is observed due to higher 

aggregate formation.  

 

 
Figure 5: UV-Visible DRS of Ni/Ti LDH. 

 

3.4.2.  Comparative UV-VIS DRS analysis:   

 

The solid UV-visible DRS spectra measured at room temperature for the synthesized Ni/Ti LDH and 

commercial catalysts like ZnO, ZnS, TiO2 and Degussa P25 are shown in Figure 6. All of them showed strong 

absorbance    ~270-460 nm. In addition to this, the synthesized LDH exhibits stronger absorption band from ~ 

400-700 nm, which is not observed in any the commercial catalysts. The stronger absorbance in the visible 

region of the electromagnetic spectrum makes the Ni/Ti LDH, a potential candidate for degradation of dyestuffs 

under visible light than that of the commercial catalysts like ZnO, ZnS, TiO2 and Degussa P25
 
[4, 5].  

 

 
Figure 6. UV-Visible DRS spectra of Ni/Ti LDH with some important commercial catalysts. 

 

3.4.3. Calculation of band gap:   

                      

UV–vis absorption measurement is a convenient and effective method for explaining the band structure of 

semiconductor materials. For a better understanding of the semiconducting properties of Ni/Ti LDH, the band 

gap of the Ni/Ti LDH and that of some commercial catalysts were measured from solid UV–Visible diffuse 

reflectance study (Figure 7) following the classical Tauc approach.  

 

          (  –   )
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where, Eg represents the optical band gap, Ep is the photon energy, K is a constant and n depends on the nature 

of the transition. In fact, n assumes a value of 1/2, 3/2, 2, and 3 for direct allowed, direct forbidden, indirect 

allowed and indirect forbidden transitions respectively. In case of Ni/Ti LDH, Ep at a = 0 gives absorption edge 

energies corresponding to Eg = 2.69 eV which is much smaller than that of pure ZnO (∼3.21 eV), ZnS (∼3.54 

eV), TiO2 (∼3.22 eV) and Degussa P25 (∼3.19 eV). The narrow band gap imparts better semiconducting 

properties to Ni/Ti LDH in comparison to photocatalysts like ZnO, ZnS, TiO2 and Degussa P25
 
[4, 5]. 

Moreover, the red shift in the UV-visible absorption spectrum of the Ni/Ti LDH is attributed to the narrow band 

gap. This suggests that  pairs can be generated, even though the particle is irradiated with long wavelength-

visible light. The decrease of band gap of the synthesized LDH can be attributed to the localized gap states 

induced by Ti
3+

 and oxygen vacancies that are responsible for its unique photocatalytic applications. Thus, Ni/Ti 

LDH material is expected to show more activity in the visible region of the electromagnetic spectrum and hence 

was used for dye degradation purpose under visible light. 

 

 
Figure 7. Tauc plot of Ni/Ti LDH with important commercial catalysts. 

 

3.5. Photocatalytic reactions:  

                       

The photocatalytic activity of material is dependent on the surface  area, narrow band gap, light harvesting 

ability by absorbing the incident photons with energies larger than its band gap energy (Eg). The high specific 

surface area, narrow band gap as evident from BET and DRS analyses indicate that the synthesized LDH 

material could be induced easily with visible light, to produce more photo-induced carriers, resulting in high 

visible light photocatalytic activity. In the photocatalytic reactions, Ni/Ti LDH photocatalyst was dispersed in 

200 ml aqueous solution of Methylene Blue (MB) and the mixture was stirred vigorously for 30 min in the dark 

for establishing adsorption equilibrium and then was exposed to irradiation under visible-light. The synthesized 

LDH exhibited better photocatalytic degradation of MB than commercial catalysts like ZnO, ZnS, TiO2 and 

Degussa P25. The degredation experiments were performed separately by varying the catalyst dose, dye 

concentration and pH. The photocatalytic degradation was estimated from the decrease in the absorption 

intensity of MB at λmax = 664 nm at 15 min intervals and the absorption spectra of the mixture were monitored 

as functions of irradiation time by using a UV-Vis spectrometer (Shimadzu 1800).  

 

 
Figure 8. UV-visible absorption spectra involving the photo degradation of MB with Ni/Ti LDH (pH=11; 0.075 

gL
-1

 of catalyst; 1x10
-6

 M MB solution). 
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The extent of the decomposition of the MB dye was obtained from the ratio, C/C0, where C and C0 were the 

absorbances at a particular time interval and at t = 0 respectively. It is seen that the strong absorption bands of 

MB decreased gradually upon increasing irradiation time and the absorbance of the dye solution was close to 

zero after 75 min of visible light irradiation for the synthesized LDH (Figure 8). In addition, the solution colour 

changed from an initial blue to nearly transparent at the end of the degradation. The enhanced photocatalytic 

activity of the synthesized Ni/Ti LDH, compared to ZnO, ZnS, TiO2 and Degussa P25 can be explained by the 

presence of high surface area, narrow band gap associated within the layered brucite like structure as supported 

respectively by BET, DRS and X-ray diffraction analyses. Blank (without catalyst) as well as dark reactions (in 

dark) were also performed under the same experimental conditions. Negligible degradation of MB was observed 

in the absence of the photocatalyst or visible light irradiation, which indicates that visible light plays a vital role 

in the degradation experiments. 

 

3.5.1. Effect of photocatalyst dose: 

 

The influence of catalyst dosage on decolorization of MB under visible light using Ni/Ti LDH catalyst was 

studied by varying the amount of catalyst between 0.025 to 0.1 gL
−1

 at 1 x 10
-6 

M MB concentration (Figure 9). 

The results showed that on increasing the amount of catalyst from 0.025 to 0.075 gL
−1

, an increase in 

decolorization efficiency was observed from 66% to 99.8% respectively. The increase in decolorization 

efficiency with increasing amount of catalyst dose in the reaction resulted from an increase in the available 

surface area or the active sites of the catalyst. However, the decrease in the degradation efficiency on increasing 

the catalyst load further to 0.1 gL
−1

 could be attributed to deactivation of activated molecules by collision with 

ground state molecules of the catalyst. Following this observation, the catalyst amount was kept to the value of 

0.075 gL
−1

 in subsequent photocatalytic degradation experiments for obtaining maximum degradation 

efficiency. 

 

 
Figure 9. The effect of catalyst concentration on the photodegradation of MB (pH=11; MB concentration= 1x10

-

6
 M). 

 

3.5.2. Effect of pH:                               

 

The pH of the dye solution is an important parameter which controls the rate of degradation. In order to study 

the effect of pH, the degradation experiments were carried out using 0.075 gL
-1

 of catalyst; 1x10
-6

 M MB 

solution (Figure 10) within the pH range of 5.0 to 11.0 by addition of either HCl or NaOH (0.1 M). The 

relationship C/C0 of aqueous MB was observed by varying pH and is presented in Figure 10. When the pH of 

the solution was increased from 5.0 to 6.0, the removal of MB increased from 36% to 41%. The maximum MB 

degradation of ~ 99.8 % was observed at pH 11.0, which is found to be in good agreement with the previous 

studies. The pH determines the surface charge on the catalyst surface. The degradation efficiency was found to 

be low in the acidic media. This is because at low pH, the H
+
 ion was considered to be a competitor to MB for 

adsorption sites on the surface of the catalyst. As a result, the degradation of MB could not be enhanced to a 

greater extent. However, in alkaline medium, at higher pH, the catalyst surface are likely to be electrostatically 

attracted to the MB molecules which has lead to the increase the degradation efficiency.  
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Figure 10. The effect of pH on photodegradation of MB (LDH dose=0.075 gL

-1
;  MB concentration= 1x10

-6
 M).  

 

3.5.3. Effect of initial dye concentration: 

 

It is important from mechanistic as well as application point of view to study the dependence of dye 

concentration on the photocatalytic degradation rate. The effect of initial MB dye concentration on the 

degradation rate was investigated in the concentration range of 1 x 10
-4

, 1 x 10
-5

 and 1 x 10
-6

 M, maintaining the 

other reaction parameters constant (pH= 11; catalyst dose= 0.075 gL
-1

) (Figure 11). It is found that with             

1 x 10
-6

 M MB concentration ~99.8% degradation was achieved. Beyond this concentration, the degradation rate 

decreased to 78% and 92% respectively for 1 x 10
-4 

M and 1 x 10
-5

 M MB. This may be due to the following 

factors: (i) higher dye concentration might serve as inner filter shunting the photons away from the catalyst 

surface (ii) non availability of oxidative free radicals (iii) more number of dye molecules get adsorbed on the 

catalyst surface thus blocking the surface active sites to participate in the degradation process. Thus, MB 

concentration was kept to 1 x 10
-6

 M in photocatalytic degradation experiments for obtaining maximum 

efficiency. 

 

 
Figure 11. The effect of initial dye concentration on the photodegradation (pH= 11;  catalyst dose= 0.075gL

-1
). 

3.5.4. Catalyst recyclability: 

 

After each reaction run, the catalyst was separated from the reaction system and its reusability was also 

investigated carefully. The catalyst was washed three times with water, dried and reused.  The degree of MB 

degradation for the first cycle was ~99.8% (Figure 12). Although the degradation ability of the catalyst declined 

to ~ 97.5%, 94.3%, 91.2% and 88.1% respectively for second, third, fourth and fifth cycles when they were 

reused again, the degradation rate still could amount to 88.1% after repeating fifth catalytic procedure, 

suggesting that the synthesized LDH is a potential recyclable candidate for dye degradation purposes. 
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Figure 12. Number of cycles of aqueous MB photodegradation over Ni/Ti LDH. 

 

3.5.5. Comparative study of the photocatalytic process: 

 

A comparative study was undertaken to validate the influence of Ni/Ti LDH on photocatalytic activity of MB, 

(pH= 11; catalyst dose= 0.075 gL
-1

; MB concentration= 1x10
-6

 M) which revealed an enhanced degradation of 

the aqueous MB over some important commercial catalysts like ZnO, TiO2, ZnS and Degussa P25 (Figure 13). 

The plot of C/C0 versus irradiation time revealed that the Ni/Ti LDH displayed high photocatalytic activity 

under visible-light irradiation, reaches ∼99.8 % in 75 min, in comparison to that of other commercial catalysts 

(ZnO ~59%, ZnS ~49%, TiO2 ~43%, Degussa P25 ~71% degradation respectively). Thus, Ni/Ti LDH showed 

the highest photocatalytic activity in the visible light region than that of the commercial catalysts. Moreover, the 

blank reaction performed under the same set of experimental conditions without the catalyst showed ∼15 % 

adsorption, as evident from the C/C0 plot against time, is attributed to the effect of the visible light exposure on 

adsorption of the dye. However, the control experiments performed in the dark revealed ∼23% adsorption as 

evident from the C/C0 plot against time, indicating that visible light plays a major role in the degradation of 

aqueous methylene blue.  

 

 
Figure 13. Plot of degradation of aqueous MB (C/C0) as a function of irradiation time for Ni/Ti LDH. 

 

4. Conclusions:                       

 

In summary, Ni/Ti-LDH on urea substrate played a promising role as a semiconductor photocatalyst in which Ti 

atoms were dispersed homogeneously in the LDH lattice. The as-synthesized Ni/Ti-LDH has been found to 

exhibit remarkable photocatalytic activity for the degradation of aqueous methylene blue under visible light in 

comparison to that of some important commercial photocatalysts like ZnO, ZnS, TiO2 and Degussa P25, due to 

its high specific surface area, porous structure and lower band gap as confirmed by BET/BJH, DRS, FT-IR and 

XRD observations. The photocatalytic activity improved in alkaline media particularly at pH 11, due to the 

electrostatic attractions between oppositely charged MB molecules and the Ni/Ti LDH. However, the catalyst 

retained its activity after five cycles of MB degradation and the FT-IR analysis of the catalyst before and at the 
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end of the fifth cycle showed excellent photostability. The strategy of applying urea solution as basic precipitant 

and adding homogeneously dispersed Ti atoms could be further extended to other transition metal-based 

oxide/hydroxide thin films to enhance their photocatalytic properties. Therefore, it is expected that the Ni/Ti 

LDH in this work could be potentially used as an effective and recyclable photocatalyst for large scale 

environmental wastewater treatment. 
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