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Abstract: The vibrational spectrum of an         
   complex was calculated by Density functional Theory 

(DFT) frequency calculation and are optimized using the BP86 or B3LYP functionals and TZVP basis. Using a 

DFT approach, the normal mode composition factors and vibrational frequencies have been determined, and the 

nuclear resonance vibrational spectroscopy (NRVS) spectra have been fitted and simulated. The strong 

correlation between the experimental and calculated spectra allows for a clear interpretation of the NRVS data. 

These data provide important spectroscopic markers for high-valent Fe species and demonstrate the utility of 

this technique for the determination of Fe dynamics. 
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1. Introduction:  

 

Nuclear resonance vibrational spectroscopy (NRVS) is a newly developed vibrational technique which utilizes 

synchrotron radiation generated at brilliant 3rd generation synchrotron radiation facilities like the Advanced 

Photon Source at Argonne National Lab. NRVS is closely related to Mossbauer spectroscopy, in which certain 

isotopes are constrained in solids to allow recoilless resonant absorption of incident gamma rays by the nucleus. 

Thus, the hyperfine structure of the probe nuclei can be observed. The probe nuclei vibrate along the molecular 

potential surface with vibrational energies on the order of tens of MeV. The nucleus can resonantly absorb 

photons with excess energy (∆E) relative to the transition energy (E0) of the probe nuclei, if E happens to create 

one vibrational quantum. If the energy is scanned over a reasonably large range, for example, -30∼100 MeV 

around E0, a phonon spectrum of the probe nuclei can be obtained. NRVS is a valuable methodology recently 

applied in bioinorganic chemistry [1- 4]. For example, NRVS has been used to assign metal-ligand vibrational 

modes of diatomic molecules coordinated to porphyrins [4, 5, 6] and to detect nitrosylated iron-sulfur clusters in 

proteins [7, 8]. NRVS and density functional theoretical (DFT) studies of mononuclear Fe(III)–OOH [10 32] 

and Fe(IV)=O [9,10] compounds have provided insight into their distintive chemical properties. 

 

2. Computational methods:  

 

The NRVS intensity derives exclusively from 
57

Fe nuclei and directly depends on the vibrational frequencies 

and normal mode composition factors that characterize the extent of involvement of the resonant nucleus in a 

given normal mode [11, 12] The normal mode composition factors of 
57

Fe (denoted as      
  , where index α 

refers to a normal mode) are determined by the molecular force fields, and thus their values reflect the details of 

the electronic structure.  

 

In order to put the fitting on as sound as possible physical ground, we have carried out DFT frequency 

calculations performed at the BP86/TZVP level of theory. The DFT calculations provide the number of 

vibrational modes in the investigated frequency range, as well as initial guesses for the normal mode 

composition factors     
  and vibrational frequencies. In order to avoid ambiguities and to minimize the number 

of free parameters, all line widths (FWHM, full width at half-height) were kept identical. After initial trials, the 

line shape was determined to be better represented by Lorentzians than by Gaussians, with a FWHM of 15.1  

cm
-1

.  
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All calculations were performed with the ORCA package [13, 14]. The structures of the models and 

experimental geometries of complexes were optimized using the BP86 or B3LYP functionals and TZVP basis 

[15]. In the geometry calculations, an intermediate grid for the electron density was used together with tight SCF 

convergence criteria. Figure1.show our calculated NRVS plot which we compare with the theoretical IR 

spectrum on the same scale. NRVS reports the Doppler broadening of the Moessbauer signal due to resonant 

scattering of phonons (vibrations) dominated by the Fe nuclei movements. This is a valuable addition to IR 

spectra where the corresponding vibrations might have very small intensity. 

 

 

 
Figure 1: Theoretical IR spectrum with the shapes of vibrations dominating the IR intensity and NRVS 

scattering. 

 

3. Conclusions and Discussion:  

 

In this paper, we have summarized the details of our implementation of the NRVS into a quantum chemical 

code (ORCA). Normal mode composition factors provide a convenient means for the quantitative description of 

NRVS data. They can be calculated on the basis of the entire set of atomic displacements in a given normal 

mode [16-18]. In our approach, normal mode composition factors are determined in an equivalent but more 

compact form as appropriate components of an orthogonal matrix that diagonalizes the Hessian matrix.  
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