A Perturbed Self-organizing Multiobjective Evolutionary Algorithm to solve Multiobjective TSP
Abstract
Travelling Salesman Problem (TSP) is a very important NP-Hard problem getting focused more on these days. Having improvement on TSP, right now consider the multi-objective TSP (MOTSP), broadened occurrence of travelling salesman problem. Since TSP is NP-hard issue MOTSP is additionally a NP-hard issue. There are a lot of algorithms and methods to solve the MOTSP among which Multiobjective evolutionary algorithm based on decomposition is appropriate to solve it nowadays. This work presents a new algorithm which combines the Data Perturbation, Self-Organizing Map (SOM) and MOEA/D to solve the problem of MOTSP, named Perturbed Self-Organizing multiobjective Evolutionary Algorithm (P-SMEA). In P-SMEA Self-Organizing Map (SOM) is used extract neighborhood relationship information and with MOEA/D subproblems are generated and solved simultaneously to obtain the optimal solution. Data Perturbation is applied to avoid the local optima. So by using the P-SMEA, MOTSP can be handled efficiently. The experimental results show that P-SMEA outperforms MOEA/D and SMEA on a set of test instances.
Full Text:
PDFRefbacks
- There are currently no refbacks.
------------------------------------------------------------------------------------------------------------------------
The ADBU Journal of Engineering Technology (AJET)" ISSN:2348-7305
This journal is published under the terms of the Creative Commons Attribution (CC-BY) (http://creativecommons.org/licenses/)