A review of Terahertz technology and Metamaterial based electromagnetic absorber at Terahertz band

Darothi Das, Kaustubh Bhattacharyya, Sunandan Baruah

Abstract


 Terahertz (THz) technology, a new step towards the wireless communication is a recent topic of research. THz radiation has unique properties which make it better than microwaves, infrared, X-rays, etc. These radiations have wide applications in various fields like imaging, spectroscopy, security, biomedicine, sub-millimeter astronomy, in communication, etc. THz radiation sources and detectors play a vital role in the THz communication system.  The sources and detectors for THz radiation are still in a developing stage. As in naturally occurring materials, there is lack of good terahertz characteristic, so researchers are moving towards artificial one, i.e., the metamaterial based design. Metamaterial based design of generation and detection of THz radiation is the recent demands in the field of THz communication. Hence, we are focussing on the metamaterial based terahertz transmitter and receiver. So in this paper, a brief study of the THz technology based on metamaterial has been carried out and presented here.

Full Text:

PDF

References


I. F. Akyildiz, J. M. Jornet, and C. Han, "Terahertz band: Next frontier for wireless communications, " Physical Communication, vol. 12, pp. 16-32, 2014.

Shur.M., “Terahertz technology: Devices and applications,†Proceedings of ESSCIRC, 13-21, Grenoble, France, 2005.

B. Zhu, Y. Chen, K. Deng, W. Hu, and Z. S. Yao, “Terahertz Science and Technology and Applications,†PIERS Proceedings, Beijing, China, March 23–27, 2009.

Ashish Y. Pawar, Deepak D. Sonawane, Kiran B. Erande, Deelip V. Derle, “Terahertz technology and its applications, †Published by Reed Elsevier India Pvt. Ltd, Drug invention today Vol. 5, pg. 1 5 7 - 1 6 3, 2 013

W. R. Tribe, D. A. Newnham, P. F. Taday, and M. C. Kemp, “Hidden object detection, security applications of terahertz technology,†in Proc. SPIE, 2004, vol. 5354, p. 55.

Simrat, Jatinder Pal Singh Raina, “Design, Analysis and Simulation of Metamaterial Electromagnetic Absorber,†International Journal of Innovative Research in Computer and Communication Engineering Vol. 3, Issue 11, November 2015.

Gabriel Kniffin, “Metamaterial Devices for the Terahertz Band,†Portland State University, June 4, 2009.

Michael J. Fitch and Robert Osiander, “Terahertz Waves for Communications and Sensing,†Johns Hopkins APL Technical Digest, Vol. 25, No. 4, 2004.

D. Saeedkia, Handbook of Terahertz Technology for Imaging, Sensing and Communications, Cambridge: Woodhead Publishing Limited, 2013.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communicationsâ€, J. Appl. Phys., vol. 107, p. 111101, 2010.

Hirata, A., T. Nagatsuma, T. Kosugi, et al., “10-Gbit/s wireless communications technology using sub-terahertz waves," Proc. SPIE, Terahertz Physics, Devices, and Systems II, Vol. 6772, 67720B, 2007.

Thomas Kürner& Sebastian Priebe, “Towards THz Communications - Status in Research, Standardization and Regulation,†Springer Science+Business Media New York 2013, Received: 30 April 2013 / Accepted: 29 July 2013.

T. Kürner, “Towards Future THz Communications,†Terahertz Science and Technology, vol. 5, no. 1, pp.11-17, March 2012

Ho-Jin Song, Member, IEEE, and Tadao Nagatsuma, Senior Member, IEEE, “Present and Future of Terahertz Communications,†IEEE Transactions on terahertz science and technology, Vol. 1, No 1, September 2011.

“Terahertz (THz) Technology: An Introduction and Research Update,†High Frequency Electronics, February 2008.

Giles D., “Terahertz spectroscopy of explosives and drugs,†Materials Today. 2008; 11: 18-26.

R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, M. Pepper, "Terahertz pulse imaging of ex vivo basal cell carcinoma," J. Investigative Dermatol., vol. 120, no. 1, pp. 72-78, Jan. 2003.

Bradley Ferguson, Xi-Cheng Zhang, “Materials for terahertz science and technology,†Nature materials, vol.1, pg. 26-33(2002).

Grischkowsky, D., and Cheville, R. A., “Limits and Applications of THz Time-Domain Spectroscopy,†in Proc. SPIE—Int. Soc. Opt. Eng.2524, pp. 26–37 (1995).

Van der Weide, D. W., “Electronic Sources and Detectors for Wideband Sensing in the THz Regime Sensing with THz Radiation,†D. Mittleman (ed.), pp. 317–334, Springer-Verlag, New York (2003).

Michael R. Boersma, “An Introduction to Terahertz Electromagnetic Waves Generation, Detection, Properties and Applications,†Member IEEE.

Hou-Tong Chen, Willie J. Padilla, Richard D. Averitt, Arthur C. Gossard, Clark Highstrete, Mark Lee, John F. O Hara, and Antoinette J. Taylor, “ Electromagnetic metamaterials for terahertz applications. Terahertz Science and Technology, †1(1):42–50, March 2008

Withawat Withayachumnankul, Derek Abbott, Fellow, IEEE, “Metamaterials in the Terahertz Regime,†IEEE Photonics journal, An IEEE Photonic Society Publication, pp. 99-118, Volume 1, Number 2, August 2009.

Kürner, T. “Scenarios for the Applications of THz Communciations,†IEEE 802 Plenary Session, IEEE 802.15 Document 15-11-0749-00-0 thz, Atlanta, (2011).

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, T. Kürner: “Terahertz Characterisation of Building Materials,†Electronics Letters, 41, 18, 1002–1004, (2005).

Michael C. Kemp, Member, IEEE, “Explosives Detection by Terahertz Spectroscopy—A Bridge Too Far?â€, IEEE Transactions on Terahertz science and technology, Vol.1, No.1, September 2011.

T. Minotani, A. Hirata, and T. Nagatsuma, “A broadband 120-GHz. Schottky-diode receiver for 10-Gbit/s wireless links,†IEICE Trans. Electron. E86-C, 1501-1505 (2003).

C. Baker, W. R. Tribe, T. Lo, B. E. Cole, S. Chandler, and M. C. Kemp,“People screening using terahertz technology,†in Proc. SPIE, 2005,vol. 5790, pp. 1–10.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,†Nature Materials, vol. 1, no. 1, pp. 26–33, September 2002.

Hirata, A., T. Nagatsuma, T. Kosugi, et al., 10-Gbit/s wireless communications technology using sub-terahertz waves," Proc. SPIE, Terahertz Physics, Devices, and Systems II, Vol. 6772, 67720B, 2007.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,†J. Infrared, Millim.Terahertz Waves, vol. 32, pp. 143–171, 2011.

T. Kürner, “THz Communication– Approaching Wireless 100 Gbit/s,†in Proc. International Symposium on Future THz Technology FTT 2012, Nara, Japan, November 2012

D. Britz, “Evolution of extreme bandwidth personal and local area terahertz wireless networks,†IEEE 802.15-10/162r0.

M. Koch, “Terahertz communications: A 2020 vision,†in Terahertz Frequency Detection and Identification of Materials and Objects, R. Miles, Ed. et al. Dordrecht, the Netherlands: Springer Netherlands, 2007, vol. 19, pp. 325–338.

D. Schurig, J.J. Mock, and D.R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,†Appl. Phys. Lett. 88, Vol.8, Issue 4, November 2005.

S. Sankaran, M. Chuying, S. Eunyoung, S. Dongha, C. Changhua, H. Ruonan, D. J. Arenas, D. B. Tanner, S. Hill, H. Chih-Ming, and K. O. Kenneth, “Towards terahertz operation of CMOS,†Proc. Int. Solid-State Circuits Conf. (ISSCC), 2009, pp. 202–203.

S. Sankaran and K. O. Kenneth, “Schottky barrier diodes for millimetre wave detection in a foundry CMOS processs,†IEEE Electron Devices Lett., vol. 26, no. 7, pp. 492–494, Jul. 2005.

P. Jepsen, R. Jacobsen and S. Keiding, "Generation and Detection of Terahertz Pulses from Biased Semiconductor Antennas," J. Opt. Soc. Am.B, vol. 13, no. 11, pp. 2424-2436, November 1996.

M. Tani, M. Herrmann, and K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its applications to imaging,†in Measurement Science and Technology, vol 13, pp. 1739-1745.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,â€Appl. Phys. Lett. 76, 2505–2507 (2000).

M., Franken, P. A., Ward, J. F., and Weinreich, G., “Optical Rectification,†Phys. Rev. Lett. 9, 446–448 (1962).

NathanBurford, Magda El-Shenawee, “Modeling of Plasmonic Terahertz Antennas using COMSOL® Multiphysicsâ€, IEEE 978-1-4799-7815-1/15/, pp. 2107-2108, 2015

J. N. Heyman, P. Necocleous, and D. Hebert, “Terahertz emission from GaAs and InAs in a magnetic field,†in Physical Review, vol 64, 085202.

Landy NI, et al. (2008-05-21)"Perfect Metamaterial Absorber,†Phys. Rev. Lett. 100 (20): 207402 (2008).

R. B. Greegor, C. G. Parazzoli, K. Li, M. H. Tanielian, "Origin of dissipative losses in negative index of refraction materials," Appl. Phys. Lett., vol. 82, no. 14, pp. 2356-2358, Apr. 2003.

P. H. Siegel, “Terahertz Technologyâ€, IEEE Trans. Microw. Theory Tech., vol. 50, pp. 910-928, Mar. 2002.

L. A. Butler, “Design, simulation, fabrication, and characterizations of terahertz metamaterial devices,†http://acumen.lib.ua.edu/content/u0015/0000001/0000899/u001500000010000899.pdf

W. J. Padilla, D. N. Basov, and D. R. Smith, "Negative refractive index metamaterials," Materials Today, vol. 9, pp. 28-35, July/Aug. 2006.

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, “Active terahertz Metamaterial Devices,†Nature 444, 597–600 (November, 2006).

D. S. Wilbert, M. P. Hokmabadi, J. Martinez, P. Kung, and S. M. Kim, “Terahertz metamaterial perfect absorbers for sensing and imaging,†Proc. SPIE 8585, 85850Y, 85850Y-6 ("February, 2013).

Claire M. Watts, Xianliang Liu , and Willie J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,†WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Advanced Optical Materials.2012, 24, OP98–OP120

N. I. Landy , S. Sajuyigbe , J. J. Mock , D. R. Smith , W. J. Padilla , “Perfect Metamaterial Absorber,†Physics Review Letter, Vol. 100, 2008 , , pp. 207-402.

Mohammad Parvinnezhad Hokmabadi, David S. Wilbert, Patrick Kung, and Seongsin M. Kim, “Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model,†Vol. 21, No. 14, 15 July 2013.

CST Computer Simulation Technology: www.cst.com/, accessed date: January 2012

ANSYS HFSS: www.ansoft.com/products/hf/hfss/, accessed date:January 2012

Comsol Multiphysics: www.comsol.com/, accessed date: January 2012

Jianfei Zhu, Zhaofeng Ma, Wujiong Sun, Fei Ding, Qiong He, Lei Zhou, and Yungui Ma, “High-performance THz metamaterial absorber,†State Key Laboratory for Modern Optical Instrumentation, 2012

Hu Tao, Nathan I. Landy, Christopher M. Bingham, Xin Zhang1, Richard D. Averitt, and Willie J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,†Optics Express 7182, Vol. 16, No. 10, 12 May 2008.

Hu Tao, N.I. Landy, Kebin Fan, A.C. Strikwerda, W.J. Padilla, R.D. Averitt, and Xin Zhang, “ Flexible terahertz metamaterials: Towards a terahertz metamaterial invisible cloak,†Technical Digest – International Electron Devices Meeting, IEDM, 2008.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,†Opt. Lett. 37(2), 154–156 (2012).

T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, and X. Zhang, “ Terahertz magnetic response from artificial materials Science,†303(5663):1494 – 1496, 2004.

Hu Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly-flexible wide angle of incidence terahertz metamaterial absorber,†590 Commonwealth Ave, Boston, Massachusetts, 02215, June 13, 2013.

A. K. Azad, J. Dai, W. Zhang, "Transmission properties of terahertz pulses through subwavelength double split-ring resonators," Opt. Lett., vol. 31, no. 5, pp. 634-636, Mar. 2006.

J. F. O'Hara, E. Smirnova, A. K. Azad, H.-T. Chen, A. J. Taylor, "Effects of microstructure variations on macroscopic terahertz metafilm properties", Act. Passive Electron. Compon., vol. 2007, pp. 49691-1-49691-10, 2007.

A. K. Azad, A. J. Taylor, E. Smirnova, J. F. O'Hara, "Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett., vol. 92, no. 1, pp. 011119-1-011119-3, Jan. 2008.

H.-T. Chen, J. F. O'Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, W. J. Padilla, "Complementary planar terahertz metamaterials," Opt. Express, vol. 15, no. 3, pp. 1084-1095, Feb. 2007.

J. F. O'Hara, E. Smirnova, H.-T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, W. J. Padilla, "Properties of planar electric metamaterials for novel terahertz applications," J. Nanoelectronics Optoelectron., vol. 2, no. 1, pp. 90-95, Apr. 2007.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, R. D. Averitt, "Terahertz metamaterials on free-standing highly-flexible polyimide substrates," J. Phys. D Appl. Phys., vol. 41, no. 23, pp. 232004-1-232004-5, Dec. 2008.

M. Aznabet, M. Navarro-Cia, S. A. Kuznetsov, A. V. Gelfand, N. I. Fedorinina, Y. G. Goncharov, M. Beruete, O. E. Mrabet, M. Sorolla, "Polypropylene-substrate-based SRR- and CSRR-metasurfaces for submillimeter waves," Opt. Express, vol. 16, no. 22, pp. 18312-18319, Oct. 2008.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, "Active terahertz metamaterial devices," Nature, vol. 444, no. 7119, pp. 597-600, Nov. 2006.

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nat. Photon., vol. 2, pp. 295-298, 2008.

T. F. Gundogdu, I. Tsiapa, A. Kostopoulos, G. Konstantinidis, N. Katsarakis, R. S. Penciu, M. Kafesaki, E. N. Economou, T. Koschny, C. M. Soukoulis, "Experimental demonstration of negative magnetic permeability in the far-infrared frequency regime," Appl. Phys. Lett., vol. 89, no. 8, pp. 084103-1-084103-3, Aug. 2006.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang, "Terahertz magnetic response from artificial materials", Science, vol. 303, no. 5663, pp. 1494-1496, Mar. 2004.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, D. R. Smith, "Tuned permeability in terahertz split-ring resonators for devices and sensor,s" Appl. Phys. Lett., vol. 91, no. 6, pp. 062511-1-062511-3, Aug. 2007.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B Condens. Matter, vol. 73, no. 19, pp. 193103-1-193103-4, May 2006.

B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, L. K. Jian, "Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep X-ray lithography," Appl. Phys. Lett., vol. 90, no. 25, pp. 254106-1-254106-3, Jun. 2007.

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, R. Beigang, "Negative index bulk metamaterial at terahertz frequencies," Opt. Express, vol. 16, no. 9, pp. 6736-6744, Apr. 2008.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies", Science, vol. 314, no. 5801, pp. 977-980, Nov. 2006.

X. Zhang, Z. Liu, "Superlenses to overcome the diffraction limit," Nat. Mater., vol. 7, no. 6, pp. 435-441, 2008.

H. O. Moser, J. A. Kong, L. K. Jian, H. S. Chen, G. Liu, M. Bahou, S. M. P. Kalaiselvi, S. M. Maniam, X. X. Cheng, B. I. Wu, P. D. Gu, A. Chen, S. P. Heussler, S. bin Mahmood, L. Wen, "Free-standing THz electromagnetic metamaterials," Opt. Express, vol. 16, no. 18, pp. 13773-13780, Sep. 2008.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, S. Schultz, "Terahertz plasmonic high pass filter," Appl. Phys. Lett., vol. 83, no. 1, pp. 201-203, Jul. 2003.

B. D. F. Casse, H. O. Moser, L. K. Jian, M. Bahou, O. Wilhelmi, B. T. Saw, P. D. Gu, "Fabrication of 2D and 3D electromagnetic metamaterials for the terahertz range," J. Phys.: Conf. Ser., vol. 34, pp. 885-890, 2006.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Opt. Lett., vol. 30, no. 11, pp. 1348-1350, Jun. 2005.

H. O. Moser, B. D. F. Casse, O. Wilhelmi, B. T. Saw, "Terahertz response of a microfabricated rod–split-ring-resonator electromagnetic metamaterial," Phys. Rev. Lett., vol. 94, no. 6, pp. 063901-1-063901-4, Feb. 2005.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons, and drugs,†Semicond. Sci. Technol. 20, S266–S280 (2005).

P. H. Siegel, “Terahertz technology in biology and medicine,†IEEETrans. Microw. Theory Techn., vol. 52, no. 10, pp. 2438–2447, Oct.2004.â€

P. Kung and S. M. Kim, “Terahertz Metamaterial Absorbers for Sensing and Imaging,†PIERS Proceedings, Taipei, March 25–28, 2013.

X. Yin et al., “Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction,†DOI 10.1007/978-1-4614-1821-4 2

Kishi T.,“Terahertz spectroscopy,†In: Joint 30th International Conference on Infrared and Millimeter Waves; 2005:184.

Murrill, S. R., B. Redman, and R. L. Espinolac, “Advanced terahertz imaging system performance model for concealed weapon identification," Proc. SPIE, Vol. 6549, 654902, 2007.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,†in Proc.SPIE, 2003, vol. 5070, p. 44.

M.F. KIMMITT, “Restrahlen to T-Rays – 100 Years of Terahertz Radiation,†Physics Centre, University of Essex, Colchester CO4 3SQ, UK, J Biol Phys. 2003 Jun; 29(2-3): 77–85.

Mingkai Liu, Mohamad Susli, Dilusha Silva, Gino Putrino, Hemendra Kala, Shuting Fan, Michael Cole, Lorenzo Faraone, Vincent P. Wallace, Willie J. Padilla, David A. Powell, Ilya V. Shadrivov and Mariusz Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven Metamaterial,†Microsystems & Nanoengineering (2017) 3, 17033, 28 August 2017

Yin Zhang, Yijun Feng, Bo Zhu, Junming Zhao, and Tian Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,†Optics express 22746, Vol. 22, No. 19, 22 September 2014.

Bing–zheng Xu, Chang-qing Gu, Zhuo Li, and Zhen-yi Niu, “A novel structure for tunable terahertz absorber based on graphene,†Optics Express 23806, Vol. 21, No. 20, 7 October 2013.

Ying Zhang, Yan Shi, Chang-Hong Liang, “Broadband tunable graphene-based metamaterial absorber,†Optical materials express 3036, Vol. 6, No. 9, 1 Sep 2016

Hou-Tong Chen, Willie J. Padilla, Richard D. Averitt, Arthur C. Gossard, Clark Highstrete, Mark Lee, John F. OHara, and Antoinette J. Taylor. “Electromagnetic metamaterials for terahertz applications,â€

W. J. Padilla and M. T. Aronsson and C. Highstrete and M. Lee and A. J. Taylor and R. D. Averitt, “Electrically resonant terahertz metamaterial,†Theoretical and experimental investigation, Phys. Rev. B 75, 041102(R) (2007).

S. Pradeep Narayanan1, Dr. S. Raghavan, “Trend of Terahertz in Metamaterials,†International Journal for Research in Applied Science & Engineering Technology (IJRASET), Volume 4 Issue VI, June 2016.


Refbacks

  • There are currently no refbacks.


------------------------------------------------------------------------------------------------------------------------

The ADBU Journal of Engineering Technology (AJET)" ISSN:2348-7305

This journal is published under the terms of the Creative Commons Attribution (CC-BY) (http://creativecommons.org/licenses/)

Number of Visitors to this Journal: