Replacement of Natural Aggregates in Geopolymer composites - A brief review
Abstract
Full Text:
PDFReferences
O. A. Mayhoub, E. S. A. R. Nasr, Y. Ali, and M. Kohail, “Properties of slag based geopolymer reactive powder concrete,” Ain Shams Eng. J., vol. 12, no. 1, pp. 99–105, 2020, doi: 10.1016/j.asej.2020.08.013.
V. Kanthe, S. Deo, and M. Murmu, “Combine Use of Fly Ash and Rice Husk Ash in Concrete to Improve its Properties,” Int. J. Eng. Trans. A Basics, vol. 31, no. 7, pp. 1012–1019, 2018, doi: 10.5829/ije.2018.31.07a.02.
R. Kajaste and M. Hurme, “Cement industry greenhouse gas emissions – management options and abatement cost,” J. Clean. Prod., vol. 112, pp. 4041–4052, 2016, doi: https://doi.org/10.1016/j.jclepro.2015.07.055.
M. Gupta and M. Kumar, “Effect of nano silica and coir fiber on compressive strength and abrasion resistance of Concrete,” Constr. Build. Mater., 2019, doi: 10.1016/j.conbuildmat.2019.07.232.
Y. Jiang, T. C. Ling, C. Shi, and S. Y. Pan, “Characteristics of steel slags and their use in cement and concrete—A review,” Resour. Conserv. Recycl., vol. 136, no. December 2017, pp. 187–197, 2018, doi: 10.1016/j.resconrec.2018.04.023.
H. Chao-Lung, B. Le Anh-Tuan, and C. Chun-Tsun, “Effect of rice husk ash on the strength and durability characteristics of concrete,” Constr. Build. Mater., vol. 25, no. 9, pp. 3768–3772, 2011, doi: 10.1016/j.conbuildmat.2011.04.009.
S. Saravanan, S. Nagajothi, and S. Elavenil, “Investigation OnCompressive Strength Development Of Geopolymer Concrete Using Manufactured Sand,” in Materials Today: Proceedings, 2019, vol. 18, pp. 114–124, doi: https://doi.org/10.1016/j.matpr.2019.06.284.
M. Gupta and N. H. Kulkarni, “A Review on the Recent Development of Ambient Cured Geopolymer Composites,” in International Conference on Emerging Trends in Engineering (ICETE), 2020, pp. 179–188, doi: 10.1007/978-3-030-24314-2_24.
E. J. Guades, “Effect of coarse aggregate size on the compressive behaviour of geopolymer concrete,” Eur. J. Environ. Civ. Eng., vol. 23, no. 6, pp. 693–709, 2019, doi: 10.1080/19648189.2017.1304276.
C. Kuenzel, L. Li, L. Vandeperre, A. R. Boccaccini, and C. R. Cheeseman, “Influence of sand on the mechanical properties of metakaolin geopolymers,” Constr. Build. Mater., vol. 66, pp. 442–446, 2014, doi: 10.1016/j.conbuildmat.2014.05.058.
M. A. A. Al-Dujaili, I. A. D. Al-Hydary, and Z. Z. Hassan, “Optimizing the Properties of Metakaolin-based (Na, K)-Geopolymer Using Taguchi Design Method,” Int. J. Eng. Trans. A Basics, vol. 33, no. 4, pp. 631–638, 2020, doi: 10.5829/IJE.2020.33.04A.14.
C. Jithendra and S. Elavenil, “Parametric Effects on Slump and Compressive Strength Properties of Geopolymer Concrete using Taguchi Method,” Int. J. Eng. Trans. C Asp., vol. 34, no. 3, pp. 629–635, 2021, doi: 10.5829/ije.2021.34.03c.06.
N. B. Singh and B. Middendorf, “Geopolymers as an alternative to Portland cement: An overview,” Constr. Build. Mater., vol. 237, p. 117455, Mar. 2020, doi: 10.1016/J.CONBUILDMAT.2019.117455.
G. M. Zannerni, K. P. Fattah, and A. K. Al-Tamimi, “Ambient-cured geopolymer concrete with single alkali activator,” Sustain. Mater. Technol., vol. 23, p. e00131, 2020, doi: 10.1016/j.susmat.2019.e00131.
M. Gupta and N. H. Kulkarni, “Investigation on the characteristics of self-cured geopolymer concrete using GBFS sand,” Innov. Infrastruct. Solut., vol. 7, no. 2, p. 139, 2022, doi: 10.1007/s41062-022-00748-5.
L. K. Turner and F. G. Collins, “Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete,” Constr. Build. Mater., vol. 43, pp. 125–130, 2013, doi: https://doi.org/10.1016/j.conbuildmat.2013.01.023.
C. Ng, U. J. Alengaram, L. S. Wong, K. H. Mo, M. Z. Jumaat, and S. Ramesh, “A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete,” Constr. Build. Mater., vol. 186, pp. 550–576, 2018, doi: 10.1016/j.conbuildmat.2018.07.075.
A. Sivakrishna, A. Adesina, P. O. Awoyera, and K. Rajesh Kumar, “Green concrete: A review of recent developments,” Mater. Today Proc., vol. 27, pp. 54–58, 2020, doi: https://doi.org/10.1016/j.matpr.2019.08.202.
G. Fahim Huseien, J. Mirza, M. Ismail, S. K. Ghoshal, and A. Abdulameer Hussein, “Geopolymer mortars as sustainable repair material: A comprehensive review,” Renew. Sustain. Energy Rev., vol. 80, no. May, pp. 54–74, 2017, doi: 10.1016/j.rser.2017.05.076.
H. Castillo, H. Collado, T. Droguett, M. Vesely, P. Garrido, and S. Palma, “State of the art of geopolymers: A review,” E-Polymers, vol. 22, no. 1, pp. 108–124, 2022, doi: 10.1515/epoly-2022-0015.
M. V. Kamath, S. Prashanth, and M. Kumar, Review of Low to High Strength Alkali-Activated and Geopolymer Concrete, vol. 105, no. December. Springer Singapore, 2021.
M. Gupta and N. H. Kulkarni, “Hurdles with self–cured Geopolymer Composites in Indian scenario,” in IOP Conference Series: Materials Science and Engineering, 2021, vol. 1116, no. 1, p. 012013, doi: 10.1088/1757-899x/1116/1/012013.
B. Joseph and G. Mathew, “Influence of aggregate content on the behavior of fly ash based geopolymer concrete,” Sci. Iran., vol. 19, no. 5, pp. 1188–1194, 2012, doi: 10.1016/j.scient.2012.07.006.
P. Palanisamy and P. S. Kumar, “Effect of molarity in geo polymer earth brick reinforced with fibrous coir wastes using sandy soil and quarry dust as fine aggregate. (Case study),” Case Stud. Constr. Mater., vol. 8, no. September 2017, pp. 347–358, 2018, doi: 10.1016/j.cscm.2018.01.009.
K. Mermerdaş, S. Manguri, D. E. Nassani, and S. M. Oleiwi, “Effect of aggregate properties on the mechanical and absorption characteristics of geopolymer mortar,” Eng. Sci. Technol. an Int. J., vol. 20, no. 6, pp. 1642–1652, 2017, doi: 10.1016/j.jestch.2017.11.009.
J. Xie, J. Wang, R. Rao, C. Wang, and C. Fang, “Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate,” Compos. Part B Eng., vol. 164, no. June 2018, pp. 179–190, 2019, doi: 10.1016/j.compositesb.2018.11.067.
M. Albitar, M. S. Mohamed Ali, P. Visintin, and M. Drechsler, “Effect of granulated lead smelter slag on strength of fly ash-based geopolymer concrete,” Constr. Build. Mater., vol. 83, pp. 128–135, 2015, doi: 10.1016/j.conbuildmat.2015.03.009.
J. Sun, J. Feng, and Z. Chen, “Effect of ferronickel slag as fine aggregate on properties of concrete,” Constr. Build. Mater., vol. 206, pp. 201–209, 2019, doi: 10.1016/j.conbuildmat.2019.01.187.
M. S. H. Khan, A. Castel, A. Akbarnezhad, S. J. Foster, and M. Smith, “Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete,” Cem. Concr. Res., vol. 89, pp. 220–229, 2016, doi: 10.1016/j.cemconres.2016.09.001.
X. Cong and W. Zhou, “Utilisation of water quenched slag as fine aggregate in alkali activated mortar,” vol. 189, pp. 498–511, 2018.
J. Xie, W. Chen, J. Wang, C. Fang, B. Zhang, and F. Liu, “Coupling effects of recycled aggregate and GGBS/metakaolin on physicochemical properties of geopolymer concrete,” Constr. Build. Mater., vol. 226, pp. 345–359, 2019, doi: 10.1016/j.conbuildmat.2019.07.311.
P. Nuaklong, V. Sata, and P. Chindaprasirt, “Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens,” Constr. Build. Mater., vol. 161, pp. 365–373, 2018, doi: 10.1016/j.conbuildmat.2017.11.152.
P. Nuaklong, A. Wongsa, V. Sata, K. Boonserm, J. Sanjayan, and P. Chindaprasirt, “Properties of high-calcium and low-calcium fly ash combination geopolymer mortar containing recycled aggregate,” Heliyon, vol. 5, no. 9, p. e02513, 2019, doi: 10.1016/j.heliyon.2019.e02513.
P. Posi et al., “Lightweight geopolymer concrete containing aggregate from recycle lightweight block,” Mater. Des., vol. 52, pp. 580–586, 2013, doi: 10.1016/j.matdes.2013.06.001.
V. H. Kundariya and C. G. Solanki, “An Experimental Study on Geopolymer Concrete using Ceramic Waste as a Fine Aggregate,” Int. J. Sci. Res. Dev., vol. 6, no. 02, pp. 1819–1822, 2018.
V. Sata, A. Wongsa, and P. Chindaprasirt, “Properties of pervious geopolymer concrete using recycled aggregates,” Constr. Build. Mater., vol. 42, pp. 33–39, 2013, doi: 10.1016/j.conbuildmat.2012.12.046.
F. U. A. Shaikh, “Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates,” Int. J. Sustain. Built Environ., vol. 5, no. 2, pp. 277–287, 2016, doi: https://doi.org/10.1016/j.ijsbe.2016.05.009.
A. Wongsa, Y. Zaetang, V. Sata, and P. Chindaprasirt, “Properties of lightweight fly ash geopolymer concrete containing bottom ash as aggregates,” Constr. Build. Mater., vol. 111, pp. 637–643, 2016, doi: 10.1016/j.conbuildmat.2016.02.135.
I. I. Bashar, U. J. Alengaram, M. Z. Jumaat, and A. Islam, “The effect of variation of molarity of alkali activator and fine aggregate content on the compressive strength of the fly ash: Palm oil fuel ash based geopolymer mortar,” Adv. Mater. Sci. Eng., 2014, doi: 10.1155/2014/245473.
I. I. Bashar, U. J. Alengaram, M. Z. Jumaat, and A. Islam, “Development of Sustainable Geopolymer Mortar using Industrial Waste Materials,” in Materials Today: Proceedings, 2016, vol. 3, no. 2, pp. 125–129, doi: 10.1016/j.matpr.2016.01.038.
A. M. Rashad, D. M. Sadek, and H. A. Hassan, “An investigation on blast-furnace stag as fine aggregate in alkali-activated slag mortars subjected to elevated temperatures,” J. Clean. Prod., vol. 112, pp. 1086–1096, 2016, doi: https://doi.org/10.1016/j.jclepro.2015.07.127.
C. Sreenivasulu, J. Guru Jawahar, M. Vijaya Sekhar Reddy, and D. Pavan Kumar, “Effect of fine aggregate blending on short-term mechanical properties of geopolymer concrete,” Asian J. Civ. Eng., vol. 17, no. 5, pp. 537–550, 2016.
K. Parthiban and K. Saravana Raja Mohan, “Influence of recycled concrete aggregates on the engineering and durability properties of alkali activated slag concrete,” Constr. Build. Mater., vol. 133, pp. 65–72, 2017, doi: https://doi.org/10.1016/j.conbuildmat.2016.12.050.
X. Ren and L. Zhang, “Experimental study of interfacial transition zones between geopolymer binder and recycled aggregate,” Constr. Build. Mater., vol. 167, pp. 749–756, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.02.111.
A. M. Aly, M. S. El-Feky, M. Kohail, and E.-S. A. R. Nasr, “Performance of geopolymer concrete containing recycled rubber,” in Construction and Building Materials, 2019, vol. 207, pp. 136–144, doi: https://doi.org/10.1016/j.conbuildmat.2019.02.121.
A. Farhad, D. Ayoub, and A. Zohaib, “Development of Lightweight Rubberized Geopolymer Concrete by Using Polystyrene and Recycled Crumb-Rubber Aggregates,” J. Mater. Civ. Eng., vol. 32, no. 2, p. 4019345, Feb. 2020, doi: 10.1061/(ASCE)MT.1943-5533.0003008.
Z. Yahya, M. M. A. B. Abdullah, S. N. H. Ramli, M. G. Minciuna, and R. Abd Razak, “Durability of Fly Ash Based Geopolymer Concrete Infilled with Rubber Crumb in Seawater Exposure,” IOP Conf. Ser. Mater. Sci. Eng., vol. 374, no. 1, 2018, doi: 10.1088/1757-899X/374/1/012069.
B. Parthiban, “Durability Aspects of Recycled Waste Glass Fine Aggregate in Geopolymer Concrete,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 7, no. I, pp. 569–575, Jan. 2019, doi: 10.22214/ijraset.2019.1093.
B. M. Mithun and M. C. Narasimhan, “Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate,” J. Clean. Prod., vol. 112, pp. 837–844, 2016, doi: 10.1016/j.jclepro.2015.06.026.
C. Sreenivasulu, J. G. Jawahar, and C. Sashidhar, “Effect of Copper Slag on Micro, Macro, and Flexural Characteristics of Geopolymer Concrete,” J. Mater. Civ. Eng., vol. 32, no. 5, p. 4020086, May 2020, doi: 10.1061/(ASCE)MT.1943-5533.0003157.
Refbacks
- There are currently no refbacks.
------------------------------------------------------------------------------------------------------------------------
The ADBU Journal of Engineering Technology (AJET)" ISSN:2348-7305
This journal is published under the terms of the Creative Commons Attribution (CC-BY) (http://creativecommons.org/licenses/)