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Abstract:Proposed here are the new ways of performing binary logical operations using decimal arithmetic. Usually, binary 
logical operations such as AND, OR, XOR etc are performed in binary arithmetic which is time consuming and quite 
erroneous when performed manually. We are familiar with decimal arithmetic, so if we can perform binary logical 
operations in decimal arithmetic, it will be easier for us and at the same time less error prone and help us understanding the 
logical operations in a better way. These logical operations are basic building block of digital devices and systems in the 
modern digital world. Understanding different ways of performing these operations may altogether bring a change in how 
the digital devices are designed. A deeper study has been made on these operations and a new logical operation named YOR 
has also been introduced.  
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I. INTRODUCTION  
We know in the digital world, we need to process the 

data in binary forms. Quite often, in addition to basic 
arithmetic operations like addition, subtraction etc we also 
need to perform logical operations such as AND, OR, XOR 
etc. In addition to using these operations designing digital 
circuits, these operations are also used in computations 
[2,3,5]. Out of these operators, XOR operations is popularly 
used in encryption [1,4].These binary logical operations are 
the basic building blocks of the digital devices and systems 
in the modern digital world.  These operations are so far 
done in binary form. So, when we need to XOR any two 
numbers, (say 120 and135), we first convert the two decimal 
numbers into binary numbers (1111000 and 10000111). We 
then perform the operation in binary and then the resulted 
binary number will be converted back into decimal. If we can 
directly perform the XOR operation in decimal, then at least 
the conversion steps would be saved and at the same time we 
can easily perform it manually. That is main motivation 
behind the writing of this paper. We want to develop a way 
of performing binary logical operation using decimal 
arithmetic. To understand the binary logical operation and 
their effects on decimal numbers we study the logical 
operations separately. We derive the recursive relation to 
generate tables of desired size in decimal. Some observable 
properties of each logical operation are also given. The way 
of performing each logical operation in decimal arithmetic 
with examples is also given. 

II. BINARY LOGICAL OPERATIONS 
Binary logic operators are used mainly in digital circuit 

design, communication and low-level programming 
languages. There is also an Algebra known as Boolean 
Algebra, specifically dealing with these logical operators. 
These binary logical operators are studied using binary 

arithmetic. In this section we discuss these binary logical 
operators in terms of decimal arithmetic and explore some 
their new properties. 

A. ANDing Operation 
The binary logic for AND operation is that if two binary 

bits are 1, it outputs 1 otherwise 0. This when put in the 
form of a table is commonly known as truth table. When 
two decimal numbers are to be ANDed, the two numbers are 
converted into binary and perform the AND operation bit by 
bit. The resulting bits are then converted back into decimal. 
Performing AND operation in binary is erroneous for larger 
numbers.  We will find a way to perform the ANDing 
operation in decimal arithmetic. For that, we need to 
perform systematic study of the ANDing operation on 
decimal arithmetic. Table-1 shows the ANDing of numbers 
0 to 15 and their corresponding results.  
There is a pattern in the table. If we divide the table into 
four equal parts, we see that the first, second and the third 
parts are equal. The fourth part is obtained from any of the 
first three parts by adding 8. Similarly, if we divide the any 
of the four equal parts into four equal parts, we see similar 
arrangement of patterns. For example, if we divide the first 
part into four equal parts, the first three parts are equal. 
Adding 4 to any of the three parts gives the fourth part. This 
regularity of pattern in logical AND operation can be 
expressed in a recursive form as 
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Where k  is any positive integer. 
When 1=k , it gives the truth table of the binary AND 
operation.  
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Table-I: Logic table of AND operation in decimal 
AND 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 
3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 
4 0 0 0 0 4 4 4 4 0 0 0 0 4 4 4 4 
5 0 1 0 1 4 5 4 5 0 1 0 1 4 5 4 5 
6 0 0 2 2 4 4 6 6 0 0 2 2 4 4 6 6 
7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 
8 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 
9 0 1 0 1 0 1 0 1 8 9 8 9 8 9 8 9 

10 0 0 2 2 0 0 2 2 8 8 10 10 8 8 10 10 
11 0 1 2 3 0 1 2 3 8 9 10 11 8 9 10 11 
12 0 0 0 0 4 4 4 4 8 8 8 8 12 12 12 12 
13 0 1 0 1 4 5 4 5 8 9 8 9 12 13 12 13 
14 0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14 
15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 
From the Table-I, we can observe the following properties. 

1. ANDing of any number with 0 is 0 
2. ANDing of any number with itself is the number 

itself. 
3. ANDing of any number with 1 is 0 or 1 according 

as the number is even or odd.  
4. ANDing of any two numbers x  and y is 0 if 

12 −=+ kyx  
5. ANDing of any number with k2  is 0 or k2  

according as the quotient of the number when 
divided by k2  is even or odd.  

6. ANDing of any number with 12 −k  is the modulus 
of k2  

Using the recursive relation of AND logic, we can 
easily get a AND matrix of size kk 22 ×  
 The image pattern of the AND matrix of size 256x256 is 
shown in Fig. 1. 

 
Fig. 1: Image of AND logic table of size 256x256 

Performing AND binary operation in decimal:  
When two decimal numbers are to be ANDed, 

express the numbers as sum of powers of 2. Then, take only 
the common and add them.  
Example-A.1: ANDing of 6 and 5, say AND(6,5) 
Express 6 and 5 as sum of powers of 2. So,  
6= 4+2, 5= 4+1 
Note here that 1 is also power of 2, i.e 120 =  
Find the powers of 2 common to both and add. 
Since 4 is common, AND(5,6)=4 
Binary AND operation:  Binary of 6 =110 
                                        Binary of 5 =101 
ANDing 110 and 101=100, which is 4 in decimal.  
 
Example-A.2:ANDing of 27 and 13 
Express 25 and 13 as sum of powers of 2. 
27=16+8+2+1, 13=8+4+1 
Find the powers of 2 common to both and add. 
Since 8+1 is common to both, AND(27,13)=8+1=9 

B. ORing Operation 
The binary logic for OR operation is that when two input 

bits are 0, the output is 0 otherwise 1.  That is, if any of the 
input bits is 1, the output is 1. We can extend it to decimal 
number.  That is, unless all bits of inputs are all zeros, the 
result is a positive integer. The OR logic table in decimal for 
integers 0 to 15 is shown in Table-2. It can be seen that, 
except the first element, which corresponds to the ORing of 
0 with 0, all elements are positive. If we closely observe and 
analyze the table, we could see some kind of regular number 
patterns. If we divide the matrix into 4 equal parts, we see 
that except the first part, the remaining three parts are equal. 
This is true if, we subdivide any part into four equal parts.  
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Table-II: Logic table of OR operation in decimal  
OR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0 0  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 
2 2 3 2 3 6 7 6 7 10 11 10 11 14 15 14 15 
3 3 3 3 3 7 7 7 7 11 11 11 11 15 15 15 15 
4 4 5 6 7 4 5 6 7 12 13 14 15 12 13 14 15 
5 5 5 7 7 5 5 7 7 13 13 15 15 13 13 15 15 
6 6 7 6 7 6 7 6 7 14 15 14 15 14 15 14 15 
7 7 7 7 7 7 7 7 7 15 15 15 15 15 15 15 15 
8 8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15 
9 9 9 11 11 13 13 15 15 9 9 11 11 13 13 15 15 

10 10 11 10 11 14 15 14 15 10 11 10 11 14 15 14 15 
11 11 11 11 11 15 15 15 15 11 11 11 11 15 15 15 15 
12 12 13 14 15 12 13 14 15 12 13 14 15 12 13 14 15 
13 13 13 15 15 13 13 15 15 13 13 15 15 13 13 15 15 
14 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 

 
The following properties can be observed from Table-II.  

1. ORing of any number with 0 is the number. 
2. ORing of any number with 1 is the number or the 

number plus 1 according as the number is odd or 
even. 

3. ORing of any number with itself is the number.  
4. ORing of any two numbers x and y  is 12 −k  if 

12 −=+ kyx  
5. ORing of any number with 12 −k  is 1)1(2 −+qk , 

where q is the quotient when the number is divided 
by 12 −k  

6. ORing of any number with k2  is rk +2 , where r is 
the remainder when the number is divided by k2 . 

 
The regularity of pattern in logical OR operation can be 

expressed recursively as 
00 =M  
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where k is any positive integer. 
When 1=k , it gives the truth table of the binary OR 
operation. 
Using the recursive relation of OR logic, we can easily get a 
OR matrix of size kk 22 ×  
The image pattern of the OR logic table of size 256x256 is 
shown in Fig. 2. 
 
Performing OR binary operation in decimal: 

Express the two decimal number as sum of powers 
of 2. Add the various powers of 2 in the two numbers only 
once. 
 
Example-B.1: ORing of 41 and 25, i.e., OR(41,25) 
Express the two numbers as a sum of powers of 2 
41=32 + 8 + 1, 25=16 +8 + 1 

Adding various powers of 2 (of 41 and 25) only once, we 
get 
32 + 16 + 8 +1= 57  
So, OR(41,25)=57 
 

 
 

Fig. 2: Image of OR logic table of size 256x256 
 
Example-B.2:ORing of 13 and 27 
Express 13 and 27 as a sum of power of 2. 
13=8+4+1, 27=16+8+2+1 
Adding various powers of 2 (in 13 and 27) only once.  
16+8+4+2+1=31  
So, OR(13,27)=31 
 
Another way to find the OR(x,y) is  
OR(x,y)=(x+y) –AND(x,y) 
 
Example-B.3:OR(13,27)  
OR(13,27)=(13+27)-AND(13,27) 
                     =40 –9 =31,  
Same as in Example-B.2. 
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C. XORing Operations 
The logic behind the binary XORing operation is that 

when the two input bits are the same the output bit is 0 and 
otherwise the output bit is 1.  This is useful to test whether 
the two bits are equal or not. This can be extended to test 
whether two decimal numbers are same or not. XORing of 
two decimal numbers yields 0 is the two numbers are the 
same otherwise a positive number.  Table-3 gives the result 
of XORing of any two numbers between 0 and 15. We can 
clearly see that the diagonal elements are 0 and off-diagonal 
elements are 15.  The diagonal elements are result of 
XORing of a decimal number with itself. The off-diagonal 
elements are XORing of a two decimal numbers whose sum 
is equal to 15 i.e, 12 −k  where 4=k  is the square root of 
the size of the table.  If we closely observe and analyze the 
table, we could see some kind of regular number patterns. If 
we divide the matrix into 4 equal parts, we see that the 
diagonal parts are equal.  
This regularity of the pattern in XOR logical operation can 
be expressed recursively as  
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where k  is positive integer.  
When 1=k , it gives the truth table of the binary XOR 
operation. 
The following properties can be observed from Table-3.  
 

1. XORing of any number with 0 is the number itself. 
2. XORing of any number with 1 is the number plus 1 

or minus 1 according as the number is even or odd.  
3. XORing of any number with itself is 0 
4. XORing of any two numbers x and y  is 12 −k if 

12 −=+ kyx  

5. XORing of any two numbers x and y  is 1 if 
1=− yx  

6. XORing of any two numbers x and y  is 22 −k if 
22 −=+ kyx  or k2  

7. XORing of any number with 12 −k is 
)1()1(2 +−+ rqk , where q and r are the quotient 

and remainder when x is divided by k2 . 
8. XORing of any number x with k2 is 

rq qk +−+ ))1((2 , where q and r are the quotient 
and remainder when x is divided by k2 . 

9. XOR logic is reversible. That is, if XOR(x,y)=z, 
then XOR(z,y)=x  and XOR(x,z)=y. E.g., 
XOR(7,3)=4, XOR(4,3)=7, XOR(7,4)=3. 

 
The XOR table exhibits repetitive patterns. The image 

pattern of XOR table of size 256x256 for k=8 is shown in 
Fig. 3. 
 

 
Fig. 3: Image of XOR logic table of size 256x256 

 
Table-IIILogic table of XOR operation in decimal 

XOR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 
2 2 3 0 1 6 7 4 5 10 11 0 9 14 15 12 13 
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 
4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11 
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10 
6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9 
7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 
9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6 

10 10 11 0 9 14 15 12 13 2 3 0 1 6 7 4 5 
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4 
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2 
14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
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Performing XOR binary operation in decimal: 
Express the two numbers as sum of powers of 2. Take only 
those elements, which are not common to both and add.  
 
Example-C.1:  XORing of 13 and 27, i.e., XOR(13,27) 
Express 13 and 27 as sums of powers of 2. 
13=8+4+1 
27=16 + 8+2+1 
Find the powers of 2, which are uncommon and add. 
16+4+2=22 
So, XOR (13,27)=22 
 
Example-C.2: XOR (11,14) 
11= 8+2+1 
14=8+4+2 
Uncommon powers of 2 in 11 and 14 are 1 and 4 
So, XOR (11,14)=1+4=5 
 

As OR operation gives the sum of the factors of 
powers of 2, which are common and uncommon, AND 
operation gives the sum of power of 2 which are common, 
then XOR which gives the sum of powers of 2,which are 
uncommon to both inputs can be derived from OR and AND 
operation as  
 
XOR(x,y)=OR(x,y)-AND(x,y) 
 
Example C.3: XOR (13,27) 
OR(13, 27)=31, AND(13, 27)=9 
So, XOR(13,27)= OR(13, 27)- AND(13,27)=31-9=22 
 
Another way to find XOR(x,y) is using the following 
relation 
XOR(x,y)=(x+y)-2*AND(x,y),  
where * denotes multiplication.  
So, XOR(13,27)=(13+27)-2* AND(13,27) 
                          =40 –2*9=40-18=22 
Also, we can write XOR operation as 
XOR(x,y)=2*OR(x,y) – (x+y) 
 
So, XOR(13,27)=2*OR(13,27)-(13+27) 

                          =2*31-40=22 
 

D. YORing Operation 
YORing logic is similar to the XORing logic in the sense 

it can be used to compare the equality of two input bits or 
numbers. If the two input bits are equal it gives 1, otherwise 
zero. This can be extended for number inputs. If the two 
numbers are equal it gives 1, otherwise it gives other non-
negative numbers. Table-4 shows the YOR logic table for 
numbers between 0 and 15. The table has regular pattern 
similar to the XOR table. If we divide the table into four 
equal parts, the diagonal parts are equal. Similar is the case 
if we subdivide any of the parts into four equal parts. This 
regularity of pattern in YOR logic can be expressed 
recursively as. 
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where k  is positive integer. 
When 1=k , it gives the truth table of the binary YOR 
operation. 
The following properties can be observed from Table-4.  

1. YORing of any number with 0 is the number plus 1 
or minus 1 according as the number is even or odd 

2. YORing of any number with 1 is the number itself 
3. YORing of a number with itself is 1 
4. YORing of any two numbers x and y is 22 −k if 

12 −=+ kyx  
5. YORing of any two numbers x and y is 0 if 

1=− yx  

6. YORing of any two numbers x and y is 12 −k  if 
22 −=+ kyx  

 
 
 

Table-4: )1616( × YOR logic in decimal 
YOR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
2 3 2 1 0 7 6 5 4 11  10  9 8 15 14 13 12 
3 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 
4 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10 
5 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11 
6 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 
7 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9 
8 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6 
9 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 

10 11  10  9 8 15 14 13 12 3 2 1 0 7 6 5 4 
11 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 
12 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2 
13 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 
14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
15 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 
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7. YORing of any number x  with 12 −k is 

1)1()1()1(2 rk rq −++−+ , where q and r are the 
quotient and remainder when x is divided by k2  
and 1r  is the remainder when 1+x is divided by 2. 

8. YORing of any number x  with k2  is
1)1())1((2 rqk rq −++−+ , where q and r are the 

quotient and remainder when x is divided by k2  
and 1r  is the remainder when x is divided by 2. 

9. YOR logic is reversible. That is, if YOR(x,y)=z, 
then YOR(z,y)=x  and YOR(x,z)=y. E.g., 
YOR(7,5)=3, YOR(3,5)=7, YOR(7,3)=5.  

 
 The YOR logic, similar to XOR logic exhibits a regular 
geometric pattern. Following Figure-4 shows the geometric 
pattern, we obtained from YOR logic Table of size 256x256. 

Performing YOR operation in decimal: 
Find the XOR of the two numbers. Add 1 if the two 

numbers are odd or even. If one is odd and the other even, 
subtract 1. That is, if both inputs are even or odd, 
yor(x,y)=xor(x,y) +1 else yor(x,y)=xor(x,y)-1. This can also 
be expressed as 
YOR(x,y)=XOR(x,y) +(-1)

 
Fig. 4: Image of YOR logic table of size 256x256 

(x+y %2) 
 
Example-D.1:YORing of YOR(13,27) 
13=8+4+1, 27=16+8+2+1 
XOR(13,27)=16+4+2=22 
We have to add 1 to XOR since both the two inputs are odd 
i.e., the sum of the two input is even so remainder of 2 is 0. 
So,YOR(13,27)=22 + 1=23 
 
Example-D.2:YOR(11,14) 
11=8+2+1, 14=8+4+2 
XOR(11,14)=4+1=5 
Since one of the input is even and the other odd. 
YOR (11,14)=XOR(11,14)-1 =5-1=4 
 

III. DISCUSSIONS 
We have described the ways of performing binary 

logical operation in decimal arithmetic. Out of the four 
logical operations, the XOR and YOR logics are reversible 
logic, which are useful for data encryption purpose. 
Examples of performing of the logical binary operation in 
decimal are also given. Performing a logical operation using 
other logical operations is also given. For example, 
performing OR operation using AND operation and vice 
versa. Also, XORing can be obtained from the AND and OR 
operations. We also use the term (x +y) in obtaining one 
logical operation from others. The term x+y signifies the 
addition of OR and AND operation.  
That is, 
(x+y)=OR(x,y) +AND(x,y) 
XOR(x,y)=OR(x,y) – AND(x,y) 
So, from these, two expressions we can write OR and AND 
operations in terms of XOR as 
OR(x,y)=[(x+y)+XOR(x,y)]/2 
AND(x,y)=[(x+y)-XOR(x,y)]/2 

So, we can also think of XOR as universal logic 
operation from which we can get all the remaining three 
logical operations, AND, OR and YOR. As finding AND or 
XOR is easier in decimal arithmetic, we can use either of 
them to perform other logical operations.  
Besides these four logical operations, there are other logical 
operation NOR (NOT OR), NAND (NOT NAND), XNOR 
(NOT XOR), YNOR (NOT YOR) by applying inverse logic 
called NOT. The NOT logic operation corresponds to 
complementing the bits in its operand. It takes single 
operand and finds the sum of missing power when the 
operand is expressed as sum of powers of 2.  Consider the 
number 25, which can be express as(24 + 23 + 20). In the 
expression of 25, 22 + 21  is missing. So, NOT(25) is 6. 
Alternatively, the NOT operation can be performed by using 
the following relation 
NOT(x)= k2 -1-x,  
where k=floor(log2(x))+1.  
For example, NOT(12)=24 − 1 − 12 = 3 
So, we can compute NOR(41,25)=NOT (OR(41,25)) 
=NOT(47)=26 − 1 − 47 = 16 
i.e., NOR(41,25)=16. 
In this way, we can compute all logical inverse binary 
logical operations in decimal. 
 

CONCLUSIONS 
The binary logical operations are studied and described 

their computations in decimal arithmetic. Several properties 
of the logical operations in decimal are also derived. 
Generalized recursive relations for the logical operations that 
can be used to generate a logical matrix or table in decimal 
are also given. Several ways of performing binary logical 
operations in decimal arithmetic are also described to enable 
a reader understand binary operation clearly. This will help 
the teachers and students in understanding and performing 
the binary logical operations in an easier way.  
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