

ADBU-Journal of Engineering Technology

Singh, AJET, ISSN:2348-7305, Volume 8, Issue 1, June, 2019, 008010603(7PP) 1

Performing Binary Logical Operation in Decimal
Arithmetic
YumnamKirani Singh

C-DAC Silchar,

Grond Floor, IIPC Building, NIT Silchar Campus,
Yumnam.singh@cdac.in

Abstract:Proposed here are the new ways of performing binary logical operations using decimal arithmetic. Usually, binary
logical operations such as AND, OR, XOR etc are performed in binary arithmetic which is time consuming and quite
erroneous when performed manually. We are familiar with decimal arithmetic, so if we can perform binary logical
operations in decimal arithmetic, it will be easier for us and at the same time less error prone and help us understanding the
logical operations in a better way. These logical operations are basic building block of digital devices and systems in the
modern digital world. Understanding different ways of performing these operations may altogether bring a change in how
the digital devices are designed. A deeper study has been made on these operations and a new logical operation named YOR
has also been introduced.

Keywords: Binary Logical Operations, OR, AND, XOR, YOR, Logical tables, Logical image patterns

(Article history: Received: 17th March 2019 and accepted 9th June 2019)

I. INTRODUCTION
We know in the digital world, we need to process the

data in binary forms. Quite often, in addition to basic
arithmetic operations like addition, subtraction etc we also
need to perform logical operations such as AND, OR, XOR
etc. In addition to using these operations designing digital
circuits, these operations are also used in computations
[2,3,5]. Out of these operators, XOR operations is popularly
used in encryption [1,4].These binary logical operations are
the basic building blocks of the digital devices and systems
in the modern digital world. These operations are so far
done in binary form. So, when we need to XOR any two
numbers, (say 120 and135), we first convert the two decimal
numbers into binary numbers (1111000 and 10000111). We
then perform the operation in binary and then the resulted
binary number will be converted back into decimal. If we can
directly perform the XOR operation in decimal, then at least
the conversion steps would be saved and at the same time we
can easily perform it manually. That is main motivation
behind the writing of this paper. We want to develop a way
of performing binary logical operation using decimal
arithmetic. To understand the binary logical operation and
their effects on decimal numbers we study the logical
operations separately. We derive the recursive relation to
generate tables of desired size in decimal. Some observable
properties of each logical operation are also given. The way
of performing each logical operation in decimal arithmetic
with examples is also given.

II. BINARY LOGICAL OPERATIONS
Binary logic operators are used mainly in digital circuit

design, communication and low-level programming
languages. There is also an Algebra known as Boolean
Algebra, specifically dealing with these logical operators.
These binary logical operators are studied using binary

arithmetic. In this section we discuss these binary logical
operators in terms of decimal arithmetic and explore some
their new properties.

A. ANDing Operation
The binary logic for AND operation is that if two binary

bits are 1, it outputs 1 otherwise 0. This when put in the
form of a table is commonly known as truth table. When
two decimal numbers are to be ANDed, the two numbers are
converted into binary and perform the AND operation bit by
bit. The resulting bits are then converted back into decimal.
Performing AND operation in binary is erroneous for larger
numbers. We will find a way to perform the ANDing
operation in decimal arithmetic. For that, we need to
perform systematic study of the ANDing operation on
decimal arithmetic. Table-1 shows the ANDing of numbers
0 to 15 and their corresponding results.
There is a pattern in the table. If we divide the table into
four equal parts, we see that the first, second and the third
parts are equal. The fourth part is obtained from any of the
first three parts by adding 8. Similarly, if we divide the any
of the four equal parts into four equal parts, we see similar
arrangement of patterns. For example, if we divide the first
part into four equal parts, the first three parts are equal.
Adding 4 to any of the three parts gives the fourth part. This
regularity of pattern in logical AND operation can be
expressed in a recursive form as

00 =M









+

=
−−

−−

11

11
2 k

k
k

kk
k MM

MM
M

Where k is any positive integer.
When 1=k , it gives the truth table of the binary AND
operation.

ADBU-Journal of Engineering Technology

Singh, AJET, ISSN:2348-7305, Volume 8, Issue 1, June, 2019, 008010603(7PP) 2

Table-I: Logic table of AND operation in decimal
AND 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2
3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
4 0 0 0 0 4 4 4 4 0 0 0 0 4 4 4 4
5 0 1 0 1 4 5 4 5 0 1 0 1 4 5 4 5
6 0 0 2 2 4 4 6 6 0 0 2 2 4 4 6 6
7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
8 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8
9 0 1 0 1 0 1 0 1 8 9 8 9 8 9 8 9

10 0 0 2 2 0 0 2 2 8 8 10 10 8 8 10 10
11 0 1 2 3 0 1 2 3 8 9 10 11 8 9 10 11
12 0 0 0 0 4 4 4 4 8 8 8 8 12 12 12 12
13 0 1 0 1 4 5 4 5 8 9 8 9 12 13 12 13
14 0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14
15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

From the Table-I, we can observe the following properties.

1. ANDing of any number with 0 is 0
2. ANDing of any number with itself is the number

itself.
3. ANDing of any number with 1 is 0 or 1 according

as the number is even or odd.
4. ANDing of any two numbers x and y is 0 if

12 −=+ kyx
5. ANDing of any number with k2 is 0 or k2

according as the quotient of the number when
divided by k2 is even or odd.

6. ANDing of any number with 12 −k is the modulus
of k2

Using the recursive relation of AND logic, we can
easily get a AND matrix of size kk 22 ×
 The image pattern of the AND matrix of size 256x256 is
shown in Fig. 1.

Fig. 1: Image of AND logic table of size 256x256

Performing AND binary operation in decimal:
When two decimal numbers are to be ANDed,

express the numbers as sum of powers of 2. Then, take only
the common and add them.
Example-A.1: ANDing of 6 and 5, say AND(6,5)
Express 6 and 5 as sum of powers of 2. So,
6= 4+2, 5= 4+1
Note here that 1 is also power of 2, i.e 120 =
Find the powers of 2 common to both and add.
Since 4 is common, AND(5,6)=4
Binary AND operation: Binary of 6 =110
 Binary of 5 =101
ANDing 110 and 101=100, which is 4 in decimal.

Example-A.2:ANDing of 27 and 13
Express 25 and 13 as sum of powers of 2.
27=16+8+2+1, 13=8+4+1
Find the powers of 2 common to both and add.
Since 8+1 is common to both, AND(27,13)=8+1=9

B. ORing Operation
The binary logic for OR operation is that when two input

bits are 0, the output is 0 otherwise 1. That is, if any of the
input bits is 1, the output is 1. We can extend it to decimal
number. That is, unless all bits of inputs are all zeros, the
result is a positive integer. The OR logic table in decimal for
integers 0 to 15 is shown in Table-2. It can be seen that,
except the first element, which corresponds to the ORing of
0 with 0, all elements are positive. If we closely observe and
analyze the table, we could see some kind of regular number
patterns. If we divide the matrix into 4 equal parts, we see
that except the first part, the remaining three parts are equal.
This is true if, we subdivide any part into four equal parts.

ADBU-Journal of Engineering Technology

Singh, AJET, ISSN:2348-7305, Volume 8, Issue 1, June, 2019, 008010603(7PP) 3

Table-II: Logic table of OR operation in decimal
OR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15
2 2 3 2 3 6 7 6 7 10 11 10 11 14 15 14 15
3 3 3 3 3 7 7 7 7 11 11 11 11 15 15 15 15
4 4 5 6 7 4 5 6 7 12 13 14 15 12 13 14 15
5 5 5 7 7 5 5 7 7 13 13 15 15 13 13 15 15
6 6 7 6 7 6 7 6 7 14 15 14 15 14 15 14 15
7 7 7 7 7 7 7 7 7 15 15 15 15 15 15 15 15
8 8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15
9 9 9 11 11 13 13 15 15 9 9 11 11 13 13 15 15

10 10 11 10 11 14 15 14 15 10 11 10 11 14 15 14 15
11 11 11 11 11 15 15 15 15 11 11 11 11 15 15 15 15
12 12 13 14 15 12 13 14 15 12 13 14 15 12 13 14 15
13 13 13 15 15 13 13 15 15 13 13 15 15 13 13 15 15
14 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

The following properties can be observed from Table-II.

1. ORing of any number with 0 is the number.
2. ORing of any number with 1 is the number or the

number plus 1 according as the number is odd or
even.

3. ORing of any number with itself is the number.
4. ORing of any two numbers x and y is 12 −k if

12 −=+ kyx
5. ORing of any number with 12 −k is 1)1(2 −+qk ,

where q is the quotient when the number is divided
by 12 −k

6. ORing of any number with k2 is rk +2 , where r is
the remainder when the number is divided by k2 .

The regularity of pattern in logical OR operation can be

expressed recursively as
00 =M













++
+=

−−

−−

11

11
22
2

k
k

k
k

k
k

k
k MM

MMM

where k is any positive integer.
When 1=k , it gives the truth table of the binary OR
operation.
Using the recursive relation of OR logic, we can easily get a
OR matrix of size kk 22 ×
The image pattern of the OR logic table of size 256x256 is
shown in Fig. 2.

Performing OR binary operation in decimal:

Express the two decimal number as sum of powers
of 2. Add the various powers of 2 in the two numbers only
once.

Example-B.1: ORing of 41 and 25, i.e., OR(41,25)
Express the two numbers as a sum of powers of 2
41=32 + 8 + 1, 25=16 +8 + 1

Adding various powers of 2 (of 41 and 25) only once, we
get
32 + 16 + 8 +1= 57
So, OR(41,25)=57

Fig. 2: Image of OR logic table of size 256x256

Example-B.2:ORing of 13 and 27
Express 13 and 27 as a sum of power of 2.
13=8+4+1, 27=16+8+2+1
Adding various powers of 2 (in 13 and 27) only once.
16+8+4+2+1=31
So, OR(13,27)=31

Another way to find the OR(x,y) is
OR(x,y)=(x+y) –AND(x,y)

Example-B.3:OR(13,27)
OR(13,27)=(13+27)-AND(13,27)
 =40 –9 =31,
Same as in Example-B.2.

ADBU-Journal of Engineering Technology

Singh, AJET, ISSN:2348-7305, Volume 8, Issue 1, June, 2019, 008010603(7PP) 4

C. XORing Operations
The logic behind the binary XORing operation is that

when the two input bits are the same the output bit is 0 and
otherwise the output bit is 1. This is useful to test whether
the two bits are equal or not. This can be extended to test
whether two decimal numbers are same or not. XORing of
two decimal numbers yields 0 is the two numbers are the
same otherwise a positive number. Table-3 gives the result
of XORing of any two numbers between 0 and 15. We can
clearly see that the diagonal elements are 0 and off-diagonal
elements are 15. The diagonal elements are result of
XORing of a decimal number with itself. The off-diagonal
elements are XORing of a two decimal numbers whose sum
is equal to 15 i.e, 12 −k where 4=k is the square root of
the size of the table. If we closely observe and analyze the
table, we could see some kind of regular number patterns. If
we divide the matrix into 4 equal parts, we see that the
diagonal parts are equal.
This regularity of the pattern in XOR logical operation can
be expressed recursively as

00 =M













+
+=

−−

−−

11

11
2

2

kk
k

k
k

k
k MM

MMM

where k is positive integer.
When 1=k , it gives the truth table of the binary XOR
operation.
The following properties can be observed from Table-3.

1. XORing of any number with 0 is the number itself.
2. XORing of any number with 1 is the number plus 1

or minus 1 according as the number is even or odd.
3. XORing of any number with itself is 0
4. XORing of any two numbers x and y is 12 −k if

12 −=+ kyx

5. XORing of any two numbers x and y is 1 if
1=− yx

6. XORing of any two numbers x and y is 22 −k if
22 −=+ kyx or k2

7. XORing of any number with 12 −k is
)1()1(2 +−+ rqk , where q and r are the quotient

and remainder when x is divided by k2 .
8. XORing of any number x with k2 is

rq qk +−+))1((2 , where q and r are the quotient
and remainder when x is divided by k2 .

9. XOR logic is reversible. That is, if XOR(x,y)=z,
then XOR(z,y)=x and XOR(x,z)=y. E.g.,
XOR(7,3)=4, XOR(4,3)=7, XOR(7,4)=3.

The XOR table exhibits repetitive patterns. The image

pattern of XOR table of size 256x256 for k=8 is shown in
Fig. 3.

Fig. 3: Image of XOR logic table of size 256x256

Table-IIILogic table of XOR operation in decimal

XOR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 2 3 0 1 6 7 4 5 10 11 0 9 14 15 12 13
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 10 11 0 9 14 15 12 13 2 3 0 1 6 7 4 5
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADBU-Journal of Engineering Technology

Singh, AJET, ISSN:2348-7305, Volume 8, Issue 1, June, 2019, 008010603(7PP) 5

Performing XOR binary operation in decimal:
Express the two numbers as sum of powers of 2. Take only
those elements, which are not common to both and add.

Example-C.1: XORing of 13 and 27, i.e., XOR(13,27)
Express 13 and 27 as sums of powers of 2.
13=8+4+1
27=16 + 8+2+1
Find the powers of 2, which are uncommon and add.
16+4+2=22
So, XOR (13,27)=22

Example-C.2: XOR (11,14)
11= 8+2+1
14=8+4+2
Uncommon powers of 2 in 11 and 14 are 1 and 4
So, XOR (11,14)=1+4=5

As OR operation gives the sum of the factors of
powers of 2, which are common and uncommon, AND
operation gives the sum of power of 2 which are common,
then XOR which gives the sum of powers of 2,which are
uncommon to both inputs can be derived from OR and AND
operation as

XOR(x,y)=OR(x,y)-AND(x,y)

Example C.3: XOR (13,27)
OR(13, 27)=31, AND(13, 27)=9
So, XOR(13,27)= OR(13, 27)- AND(13,27)=31-9=22

Another way to find XOR(x,y) is using the following
relation
XOR(x,y)=(x+y)-2*AND(x,y),
where * denotes multiplication.
So, XOR(13,27)=(13+27)-2* AND(13,27)
 =40 –2*9=40-18=22
Also, we can write XOR operation as
XOR(x,y)=2*OR(x,y) – (x+y)

So, XOR(13,27)=2*OR(13,27)-(13+27)

 =2*31-40=22

D. YORing Operation
YORing logic is similar to the XORing logic in the sense

it can be used to compare the equality of two input bits or
numbers. If the two input bits are equal it gives 1, otherwise
zero. This can be extended for number inputs. If the two
numbers are equal it gives 1, otherwise it gives other non-
negative numbers. Table-4 shows the YOR logic table for
numbers between 0 and 15. The table has regular pattern
similar to the XOR table. If we divide the table into four
equal parts, the diagonal parts are equal. Similar is the case
if we subdivide any of the parts into four equal parts. This
regularity of pattern in YOR logic can be expressed
recursively as.

00 =M













+
+=

−−

−−

11

11
2

2

k
k

k

kk
k

k MM
MMM

where k is positive integer.
When 1=k , it gives the truth table of the binary YOR
operation.
The following properties can be observed from Table-4.

1. YORing of any number with 0 is the number plus 1
or minus 1 according as the number is even or odd

2. YORing of any number with 1 is the number itself
3. YORing of a number with itself is 1
4. YORing of any two numbers x and y is 22 −k if

12 −=+ kyx
5. YORing of any two numbers x and y is 0 if

1=− yx

6. YORing of any two numbers x and y is 12 −k if
22 −=+ kyx

Table-4:)1616(× YOR logic in decimal
YOR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
3 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
4 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
5 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
6 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
7 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
8 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
9 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

10 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
11 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
12 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
13 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
15 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

ADBU-Journal of Engineering Technology

Singh, AJET, ISSN:2348-7305, Volume 8, Issue 1, June, 2019, 008010603(7PP) 6

7. YORing of any number x with 12 −k is

1)1()1()1(2 rk rq −++−+ , where q and r are the
quotient and remainder when x is divided by k2
and 1r is the remainder when 1+x is divided by 2.

8. YORing of any number x with k2 is
1)1())1((2 rqk rq −++−+ , where q and r are the

quotient and remainder when x is divided by k2
and 1r is the remainder when x is divided by 2.

9. YOR logic is reversible. That is, if YOR(x,y)=z,
then YOR(z,y)=x and YOR(x,z)=y. E.g.,
YOR(7,5)=3, YOR(3,5)=7, YOR(7,3)=5.

 The YOR logic, similar to XOR logic exhibits a regular
geometric pattern. Following Figure-4 shows the geometric
pattern, we obtained from YOR logic Table of size 256x256.

Performing YOR operation in decimal:
Find the XOR of the two numbers. Add 1 if the two

numbers are odd or even. If one is odd and the other even,
subtract 1. That is, if both inputs are even or odd,
yor(x,y)=xor(x,y) +1 else yor(x,y)=xor(x,y)-1. This can also
be expressed as
YOR(x,y)=XOR(x,y) +(-1)

Fig. 4: Image of YOR logic table of size 256x256

(x+y %2)

Example-D.1:YORing of YOR(13,27)
13=8+4+1, 27=16+8+2+1
XOR(13,27)=16+4+2=22
We have to add 1 to XOR since both the two inputs are odd
i.e., the sum of the two input is even so remainder of 2 is 0.
So,YOR(13,27)=22 + 1=23

Example-D.2:YOR(11,14)
11=8+2+1, 14=8+4+2
XOR(11,14)=4+1=5
Since one of the input is even and the other odd.
YOR (11,14)=XOR(11,14)-1 =5-1=4

III. DISCUSSIONS
We have described the ways of performing binary

logical operation in decimal arithmetic. Out of the four
logical operations, the XOR and YOR logics are reversible
logic, which are useful for data encryption purpose.
Examples of performing of the logical binary operation in
decimal are also given. Performing a logical operation using
other logical operations is also given. For example,
performing OR operation using AND operation and vice
versa. Also, XORing can be obtained from the AND and OR
operations. We also use the term (x +y) in obtaining one
logical operation from others. The term x+y signifies the
addition of OR and AND operation.
That is,
(x+y)=OR(x,y) +AND(x,y)
XOR(x,y)=OR(x,y) – AND(x,y)
So, from these, two expressions we can write OR and AND
operations in terms of XOR as
OR(x,y)=[(x+y)+XOR(x,y)]/2
AND(x,y)=[(x+y)-XOR(x,y)]/2

So, we can also think of XOR as universal logic
operation from which we can get all the remaining three
logical operations, AND, OR and YOR. As finding AND or
XOR is easier in decimal arithmetic, we can use either of
them to perform other logical operations.
Besides these four logical operations, there are other logical
operation NOR (NOT OR), NAND (NOT NAND), XNOR
(NOT XOR), YNOR (NOT YOR) by applying inverse logic
called NOT. The NOT logic operation corresponds to
complementing the bits in its operand. It takes single
operand and finds the sum of missing power when the
operand is expressed as sum of powers of 2. Consider the
number 25, which can be express as(24 + 23 + 20). In the
expression of 25, 22 + 21 is missing. So, NOT(25) is 6.
Alternatively, the NOT operation can be performed by using
the following relation
NOT(x)= k2 -1-x,
where k=floor(log2(x))+1.
For example, NOT(12)=24 − 1 − 12 = 3
So, we can compute NOR(41,25)=NOT (OR(41,25))
=NOT(47)=26 − 1 − 47 = 16
i.e., NOR(41,25)=16.
In this way, we can compute all logical inverse binary
logical operations in decimal.

CONCLUSIONS
The binary logical operations are studied and described

their computations in decimal arithmetic. Several properties
of the logical operations in decimal are also derived.
Generalized recursive relations for the logical operations that
can be used to generate a logical matrix or table in decimal
are also given. Several ways of performing binary logical
operations in decimal arithmetic are also described to enable
a reader understand binary operation clearly. This will help
the teachers and students in understanding and performing
the binary logical operations in an easier way.

ADBU-Journal of Engineering Technology

Singh, AJET, ISSN:2348-7305, Volume 8, Issue 1, June, 2019, 008010603(7PP) 7

References

[1] Z.A. Kissel, “Ofuscation of standard XOR algorithm,” Crossroads,

vol. 11(3), pp. 6-6, 2005.
[2] M.Morries Mano. “Digital Logic and Computer Design”, Prentice

Hall, 6rd

[3] M. Moris Mano, Michel D. Ciletti,. “Digital Design – with an
introduction Verilog HDL”, Pearson, 5

 Ed. 2016.

th

[4] Abdelfatah A.Tamimi, Ayman M. Abdalla, “An Image Encryption
Algorithm with XOR and S-BOX” Int’l Conf. IP, Comp.Vision and
Pattern Recognition (IPCV’15), pp. 167-169.

 Ed, 2014.

[5] John F.Wakerly, Digital Design-Principles & Practices. Prentice Hall
INC, 4th

 Ed., 2012.

AUTHOR PROFILE

YumnamKirani Singhcompleted Master's Degree in
Electronics Science from Guwahati University in 1997 and got Ph.
D. degree from Indian Statistical Institute, Kolkata in 2006.
Served as a lecturer in Electronics in Shri Shankaracharaya College
of Engineering & Technology from Jan 2005 to May 2006. Joined
CDAC Kolkata in May 2006 and worked there before coming to
CDAC Silchar, in March 2014. Developed Bino's Model of
Multiplication, ISITRA, YKSK Transforms and several other
image binarization and edge detection techniques. Interested in
working in the application and research areas of Signal Processing,
Image Processing, Pattern Recognition and Information Security.
Also published several papers in national and international journals
and conferences

	Introduction
	binary logical operations
	ANDing Operation
	ORing Operation
	XORing Operations
	YORing Operation

	Discussions
	Conclusions
	Author Profile

