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Abstract: This research paper introduces a novel automated multimodal and Multifocus fusion framework tailored for 

medical imaging applications. The proposed approach leverages advanced deep learning techniques, incorporating Partial 

Differential Equation (PDE) preprocessing and learnable convolutional pools. The algorithm accommodates diverse 

medical modalities, such as MRI, CT, visual, infrared, and multi-focus images. Through modality-specific preprocessing, 

modified convolutional layers, and adaptive pooling, the model intelligently fuses information from various sources, 

enhancing the overall imaging quality. Experimental evaluations demonstrate the effectiveness of the proposed method in 

generating high-quality multimodal medical images, showcasing its potential for improving diagnostic accuracy and clinical 

decision-making. 
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I. INTRODUCTION  

Medical imaging plays a pivotal role in modern 
healthcare, providing clinicians with invaluable insights into 
the human body's intricate structures and functions. With the 
advent of diverse imaging modalities, such as Magnetic 
Resonance Imaging (MRI), Computed Tomography (CT), 
visual, infrared, and multi-focus imaging, the wealth of 
information available for diagnosis and treatment has 
significantly expanded[1].However, the integration of 
information from these varied sources remains a complex 
challenge. Traditional fusion methods often fall short in 
capturing the nuanced relationships between different 
modalities, limiting the potential for comprehensive and 
accurate medical assessments[2]. 

In response to this challenge, our research presents an 
innovative approach to automated multimodal fus ion, 
leveraging advanced deep learning techniques. The proposed 
framework is designed to intelligently integrate information 
from diverse medical imaging modalities, encompassing 
both structural and functional data. To enhance the quality of 
the fusion process, the algorithm incorporates Partial 
Differential Equation (PDE) preprocessing, addressing the 
inherent variations in image characteristics. Furthermore, a 
set of modified convolutional layers and adaptive pooling 
mechanisms are introduced, tailoring the model to the unique 
attributes of each modality[31-32]. 

The motivation behind this research stems from the 
imperative to improve diagnostic accuracy and facilitate 
informed clinical decision-making. By developing a 
sophisticated multimodal fusion algorithm, our aim is to 
create a robust tool capable of generating high-quality fused 

images that harness the complementary strengths of various 
imaging modalities. Such an approach holds promise not 
only for enhancing diagnostic capabilities but also for 
advancing personalized medicine through a more 
comprehensive understanding of patient conditions. 

In this paper, we present the methodology, experimental 
setup, results, and discussions that highlight the effectiveness 
of our proposed approach. The findings contribute to the 
growing field of intelligent medical imaging, showcasing the 
potential of automated multimodal fusion to significantly 
impact clinical practice and patient care. 

II. LITERATURE REVIEW 

Multimodal medical image fusion has garnered 
significant attention due to its potential to enhance diagnostic 
accuracy, treatment planning, and overall clinical decision-
making. Various approaches have been explored in the 
literature to address the challenges associated with 
integrating information from diverse imaging modalities[3]. 

The integration of multiple imaging modalities has 
become increasingly relevant in medical research and 
practice. References [4] and [5] have emphasized the 
importance of combining modalities such as MRI, CT, 
visual, infrared, and multi-focus imaging to capture diverse 
physiological and pathological aspects comprehensively. 
These modalities, while individually powerful, collectively 
contribute to a more holistic understanding of medical 
conditions. 

Traditional image fusion methods, including 
mathematical operations like averaging or weighted 
summation, have been widely employed[6]. However, these 
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techniques may struggle to capture complex relationships 
among diverse data sources[7]. Advanced methods such as 
wavelet transform [8], independent component analysis [9-
10]and sparse representation [11] have addressed some of 
these limitations. Despite their successes, challenges persist 
in adapting these techniques to the dynamic nature of 
medical images. 

Current multimodal fusion approaches face limitations. 
Many lack adaptability to handle variations in image 
characteristics and the inherent complexity of medical data 
[12]. The incorporation of deep learning techniques for 
automated feature learning and representation has shown 
promise [13-18], yet this area requires further exploration. 

In response to these observations, our research 
contributes by proposing an innovative multimodal fusion 
framework. By integrating Partial Differential Equation 
(PDE) preprocessing and learnable convolutional pools, our 
approach seeks to address identified limitations, providing a 
more adaptive and intelligent solution for medical image 
fusion. 

III. METHODOLOGY 

This methodology section provides a structured approach 
to automated multimodal fusion, emphasizing the use of the 
heat equation for PDE-based preprocessing. 

A. Modality SpecificImage Preprocessing 

Prior to fusion, each modality undergoes modality-specific 

preprocessing steps as described below. 
 

 MRI and CT  images, normalization of intensity 
values is performed to create a consistent scale: 

       N             
 MRI    ( MRI)

   ( MRI)    ( MRI)
    .                (1)        

  

 Visual  and infrared  images undergo contrast 
enhancement to improve the visibility of features. 

                                     (   ) 

                                     (   
}            (2) 

Here                 represents a function applying 
linear contrast stretching is applied using a linear 
transformation: 

  (   )  
 (   )        ( )

    ( )        ( )
  (                )               (3) 

where (   )  is the pixel value in the output image, 
 (   )    ( )and    ( )  are the is the pixel value in 
the input image, minimum and maximum pixel values in 
the input image,         and         are the desired 
minimum and maximum pixel values in the output 
image, respectively. Gamma correction involves 
adjusting the intensity values of an image using a power-

law function  (   )       (     (
 (   )

   
)
 
)       (4) 

 Multi-focus images are subjected to focus 
adjustment to harmonize focal planes.  For each 
pixel (   )  in the focus-adjusted image as show  

below. 

F              M    -F     ∑   
 
                              (5) 

 
Where The weights    are determined based on the quality 

of focus at each level to assess the clarity or sharpness of 

each pixel at different focus levels. The higher the quality of 
focus at a particular level, the higher the weight assigned to 
that level. This emphasizes more focused regions in the final 

focus-adjusted image. This process ensures that details from 
different focal planes are appropriately combined, and the 
resulting focus-adjusted image provides enhanced visibility 

of details across the various focus levels. 

B. Partial Differential Equation (PDE) Preprocessing 

The heat equation is employed for PDE-based 
preprocessing  [19-21]. Let   represent the input image,    
denote the time step, and   be the thermal diffusivity 

coefficient:
  

  
                                                                (6) 

This equation facilitates noise reduction and 
enhancement of image features by smoothing variations in 
intensity. The PDE preprocessing step is applied separately 
to each modality, ensuring adaptability to the unique 
characteristics of diverse medical images, Infrared and 
visible images as well as Multifocus images . The discretized 
form of the heat equation can be implemented using 
numerical methods, such as finite differences, to obtain the 
pre-processed images 

 PDE-P                 PDE(      )                           (7) 

Here  (     PDE)  is a function that implements the 
discretized heat equation. The three parameters the input 
image   the thermal diffusivity coefficient ( ) and the time 
step (  ) for image smoothing and preprocessing. 

 Equation (5) isThe heat equation in its continuous form is 

given by 
  

  
    ) 

  

  
  is the rate of change of intensity over 

timee, and     is the Laplacian of the intensity. For discrete 
image processing, this continuous equation is discretized 
using numerical method such as finite differences. A 
common discretization for a 2D image is: 

    (        )   (     )      
  (     )          (8) 

The Laplacian     of an image  (   ) is computed using 
the second spatial derivatives. In discrete form, the Laplacian 
can be approximated using a convolution operation with a 
Laplacian kernel.  

   (   )   (     )   (     )   (     )  
 (     )    (   )                                                         (9) 

This formula calculates the sum of the differences 
between the pixel value at the centre  (   )  and its 
neighbors in the horizontal and vertical directions. This 
difference emphasizes the spatial variation or curvature in 
the image. This process is iteratively applied to the input 
image over multiple time steps to achieve the desired 
smoothing and noise reduction. 

C. Modified Convolutional Layer 

Modified convolutional layers were specifically tailored 
for each modality. The design involved adjusting key 
parameters such as kernel sizes ( )  strides ( ), and filter 
weights ( ) based on the unique attributes of the 
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corresponding modality. the convolutional operation can be 
represented as follows: 

    (     )  ∑ ∑ ∑         
   

   
 
   

 
       (             )                                                                                                                                           

(10) 

In equation (10)     (     ) is the output feature map at 

position (   )  for the     filter,    (     )  is the input 

feature map at position (   ) for     channel  *       +  are 

the filter weights for the convolution. 

PDE-enhanced features obtained from the dataset used as 
input to these layers for feature extraction. Let  PDE(     ) 
represent the PDE-enhanced features at position (   )for 

   channel. Then, the input to the convolutional layer is 
given by ,       (     )   PDE(     )                             (11) 

The modified convolutional layers underwent a training 
process. The primary objective was to optimize the layer 
parameters, including kernel sizes, strides, and filter weights. 
This training aimed to enable the model to learn modality-
specific features and their interdependencies. During 
training, the model aims to minimize a loss function   that 
quantifies the difference between the predicted output and 
the ground truth. The optimization process involves adjusting 
the parameters of the modified convolutional layers using 
techniques gradient descent. 

M         (     )                                                   (12) 

The model updates these parameters iteratively based on 
the gradients of the loss with respect to the parameters. The 
loss function   measures the difference between the 
predicted output       and the ground truth      . 

    (     )  L   (           )                                  (13) 

The model takes input data PDE-enhanced features and 
produces a predicted output     . 

         M    (       )                                       (14) 

During each iteration of training, the parameters W 
represents the filter weights, K represents the kernel sizes, S 
represents the strides. W, K, S are updated in the direction 
opposite to the gradients of the loss function with respect to 
those parameters. 

               
               
               

}                                              (15) 

Here, ( ) is the learning rate, a hyperparameter that controls 
the size of the step taken during each update. The process of 
updating parameters using gradient descent is repeated for 
multiple iterations until convergence. 

In summary, the section outlines the design of modality-
specific convolutional layers, the mathematical 
representation of the convolutional operation, and the 
training process involving the optimization of layer 
parameters for effective feature learning. 

 

D.  Automated Pooling Mechanisms 

Automated pooling mechanisms were introduced to 
dynamically adjust pooling operations based on the 

characteristics of each modality. The goal is to optimize 
pooling for different image features. 

In general, the pooling operation reduces the spatial 
dimensions of the input feature map by aggregating 
information within a local neighbourhood. The pooling 
operation is typically applied using operations such as max 
pooling or average pooling. For a given pooling operation   
applied to a feature map  , the output feature map        at 

position  (   ) is computed as follows. 

       (     )   (* (         )+                  ) (16) 

Here:       (     )is the output of the pooling operation 

at position  (   ) for the    channel.  (         ) 
represents the input feature map values within the pooling 
window centered at position (   )  

To enhance adaptability, learnable pooling layers were 
introduced. These layers allow the model to dynamically 
learn the pooling strategy during training. Let       denote 

the learnable parameters associated with the pooling layer. 
The modified pooling operation with learnable parameters is 
defined as: 

       (     )            (* (         )  

     (         )+                  )                             (17) 

                

Here,           is the learnable pooling operation that may 
include additional parameters like      . 

During training, the model aims to optimize the learnable 
parameters       to improve the pooling strategy. This 

optimization is performed by adjusting      through gradient 

descent. 

 
Fig. 1. Automated pooling Mechanism. 

 

In summary, the section introduces automated pooling 
mechanisms, emphasizing adaptability through learnable 
pooling layers. The mathematical explanation covers the 
general pooling operation, the introduction of learnable 
pooling layers, and the modified pooling operation with 
learnable parameters. 

E. Fusion Strategy 

The fusion mechanism integrated features from different 
modalities. The PDE-pre-processed and convolutionally 
extracted features were combined to generate a fused 
representation. Strategies such as weighted fusion, 
considering the importance of each modality, were applied 
for optimal integration. Strategies such as weighted fusion, 
considering the importance of each modality, were applied 
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for optimal integration. The weighted fusion operation can be 
expressed as: 

      (     )   PDE(     )   PDE(     )  
     (     )       (     )                                              (18)            

     Here  PDE(     ) represent the PDE-preprocessed 
features ,      (     )  represent the convolutionally 

extracted features at position (   ) for the    channel , 
 PDE(     )  and      (     ) denote the weights 
associated with the PDE-preprocessed and convolutionally 
extracted features, respectively. 

IV. EVALUATION 

The performance of the proposed method was evaluated 
using a set of quantitative and qualitative metrics [24]. 
Quantitative analysis involved assessing image quality 
metrics, while qualitative analysis included visual 
inspections and comparisons. Comparative studies against 
existing fusion methods provided insights into the superiority 
of the proposed approach. 

A. Data Collection 

The research data utilized in this research was collected 
from various sources, including 'The Whole Brain Atlas' [25] 
(https://www.med.harvard.edu/aanlib/home.html), 'The TNO 
Multiband Image Data Collection' by A. Toet [26] (Data in 
Brief, vol. 15, pp. 249–251, Dec. 2017, doi: 
10.1016/j.dib.2017.09.038), RAWSAMPLES.CH [27] 
(http://rawsamples.ch/index.php/en/), and GitHub 
repositories, encompassing a diverse range of datasets 
comprising medical images, infrared and visible images, and 
multifocus images. 

TABLE I.  IMAGE DATASET SPECIFICATION 

Image Dataset Image type Resolution 

Multimodal  Grayscale TIF 256 256 

Infared and visible Graylscale PNG 360 270,430 340,512 512 

Multifocus  RGB JPG 520 520 

 

B. Experimental Setup 

The successful implementation of the proposed 
automated multimodal and multifocus fusion framework 
relies on a carefully configured training setup. The deep 
learning architecture incorporates modality-specific modified 
convolutional layers, automated pooling with learnable 
pooling windows, and a fusion mechanism guided by 
specific weights. The training process involves essential 
parameters such as the learning rate, the number of training 
epochs, and the batch size. The experiments were conducted 
on a system equipped with an Intel Core i7 CPU and 16GB 
RAM. The software environment used for implementation 
and analysis was MATLAB 2021a.The following Table II 
outlines the key components, their associated parameters, 
and the corresponding values used to optimize the model 
during the training phase. 

 

 

 

 

TABLE II.  TRAINING CONFIGURATION 

 
Component Parameter Value 

Deep Learning Architecture 

Modality-Speci fic Modified 

Convolutional Layers 

Kernel Size (K) 3 

Stride (S) 1 

Automated Pooling Learnable Pooling Window 

Size 

    

Fusion Mechanism Fusion Weight (WPDE) 0.7 

 Fusion Weight (WPOOL) 0.3 

Training Parameters 

L        R    (η) (η) 0.001 

Number of Training Epochs - 50 

Batch Size - 32 

C. Qualitaive anlysis 

     As part of evaluation, the quantitative assessment using 

various quality metrics, visual comparisons were conducted 
by generating images through each of the methods—CBF 
[28], CNN[29], FPDE[30], and the proposed method. The 

resulting visual images were presented side by side, 
providing an intuitive and insightful representation of the 

comparative performance of these techniques. This dual 
evaluation approach, combining quantitative metrics and 
visual representations, offers a comprehensive understanding 

of the strengths and weaknesses of each method in 
generating fused images. 
 

 

Fig. 2. Comparison of Fused MRI and CT Brain Images using Proposed 
Method, CBF, CNN, and FPDE.  
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In the visual analysis  as shown in  Fig. 2 images 
showcase the effectiveness of different fusion techniques in 
enhancing multimodal brain imaging, the proposed image 
fusion method was compared with existing techniques, 
including CNN CBF and FPDE, across diverse datasets. For 
medical brain images captured using CT and MRI 
modalities, the proposed fusion method exhibited notable 
improvements in preserving fine details and enhancing 
overall image clarity compared to CBF and FPDE. 

In the case of infrared and visible images depicting a tank 
scene as shown in Fig. 3 is visual comparison illustrates the 
impact of different fusion techniques on enhancing features 
in both infrared and visible spectra, the proposed method 
demonstrated superior performance by effectively combining 
thermal and visual information, resulting in images with 
enhanced contrast and richer features. 

Furthermore, for multi-focus images captured by a hand 
camera observing a globe showing in Fig. 4, the proposed 
fusion method excelled in harmonizing focal planes, 
producing a fused image with improved focus across various 
depths. The visual analysis suggests that the proposed fusion 
method outperforms CBF and FPDE in handling diverse 
image modalities, showcasing its effectiveness in preserving 
critical details and achieving a more comprehensive fusion of 
information. 

 

 

 

Fig. 3. Results of Infrared and Visible Images using Various Methods. 
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Fig. 3. Multifocus Fusion Results of Hand Camera and Globe Images 
using Different Fusion Methods.  

D. Quntitative anlysis and Discusion 

In the comparison of quality metric scores for different 
image fusion methods, the results reveal valuable insights 
into the performance of each method across various image 
types. The discussion below highlights the findings from 
Tables III, IV, and V, focusing on the metrics of Entropy 
(EN), Mutual Information (MI), Peak Signal-to-Noise Ratio 
(PSNR), Structural Similarity Index (SSIM), and Root Mean 
Square Error (RMSE). 

TABLE III.  QUALITY METRIC SCORES OF MEDICAL IMAGES 

Methods 
Quality assessment matric score 

EN MI PSNR SSIM RMSE 

CBF  5.952 
2.487 

56.587 1.279 
0.137 

FPDE 6.412 2.132 56.005 1.023 0.203 

CNN 6.889 2.485 56.002 1.198 0.204 

Proposed 7.292 2.568 56.782 1.321 0.145 

 

Medical Images (Table III):CBF scores moderately 
across all metrics, with PSNR at 56.587, indicating decent 
preservation of image fidelity. However, the higher RMSE 
suggests some residual errors. FPDE performs slightly better 
than CBF in terms of MI and PSNR, but the higher RMSE 

suggests more significant errors. CNN shows competitive 
scores across all metrics, with a balanced trade-off between 
PSNR, SSIM, and RMSE. The proposed method 
outperforms CBF and FPDE, achieving the highest scores in 
EN, MI, PSNR, and SSIM. The lower RMSE indicates better 
reconstruction accuracy. 

TABLE IV.  QUALITY METRIC SCORES OF INFRARED AND VISIBLE 
IMAGES 

Methods 
Quality assessment matric score 

EN MI PSNR SSIM RMSE 

CBF  6.784 2.756 57.025 1.232 0.134 

FPDE 5.886 2.139 58.023 1.397 0.123 

CNN 6.742 2.068 57.568 1.312 0.145 

Proposed 7.123 2.145 58.214 1.375 0.094 

 

Infrared and Visible Images (Table IV): exhibits 
reasonable scores, with a notable PSNR of 57.025, indicating 
good preservation of information. However, the higher 
RMSE suggests potential artifacts. FPDE shows a significant 
improvement in PSNR and SSIM, suggesting enhanced 
image quality compared to CBF.CNN performs 
competitively with FPDE, showcasing a balanced 
combination of PSNR and SSIM. The proposed method 
outperforms all others in EN, MI, and PSNR, suggesting 
superior preservation of information and higher image 
quality. 

TABLE V.  QUALITY METRIC SCORES OF MULTIFOCUS IMAGES 

Methods 
Quality assessment matric score 

EN MI PSNR SSIM RMSE 

CBF  7.712 5.294 63.428 1.637 0.031 

FPDE 7.653 4.435 63.944 1.717 0.029 

CNN 7.674 5.404 63.106 1.625 0.032 

Proposed 7.719 4.698 63.802 1.669 0.028 

 

 

Multi-Focus Images (Table V): CBF achieves high scores 
in EN and MI, but the lower PSNR and SSIM indicate 
potential loss of image quality. FPDE shows improvements 
in PSNR and SSIM, reflecting enhanced image quality. CNN 
achieves competitive scores, but the higher RMSE suggests 
some reconstruction errors. The proposed method 
consistently performs well across all metrics, achieving the 
highest scores in EN, MI, PSNR, SSIM, and the lowest 
RMSE, indicating superior performance in preserving image 
details and minimizing errors. 

The proposed fusion method consistently demonstrates 
superior performance across all image types, outperforming 
or competitively matching existing methods in terms of 
quality metrics. The emphasis on achieving higher scores in 
EN, MI, PSNR, and SSIM, coupled with lower RMSE, 
suggests that the proposed method excels in preserving 
image information, maintaining fidelity, and minimizing 
reconstruction errors. These results highlight the 
effectiveness of the proposed method in diverse imaging 
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scenarios, making it a promising choice for various 
applications. 

V. CONCLUSION AND FUTURE SCOPE 

In conclusion, this research introduces an innovative 
automated multimodal and Multifocus fusion framework. 
Leveraging advanced deep learning techniques, including 
Partial Differential Equation (PDE) preprocessing and 
learnable convolutional pools, the proposed approach 
addresses the challenges posed by diverse medical 
modalities, such as MRI, CT, MRI-PET, visual, infrared, and 
multi-focus images. The combination of modality-specific 
preprocessing, modified convolutional layers, and adaptive 
pooling results in a robust model capable of intelligently 
fusing information from various sources, thereby enhancing 
the overall quality of multimodal medical images. 

The experimental evaluations conducted underscore the 
effectiveness of the proposed method. The outcomes 
demonstrate a significant improvement in the generation of 
high-quality multimodal medical images. The enhanced 
imaging quality achieved through our framework holds 
substantial promise for advancing diagnostic accuracy and 
contributing to more informed clinical decision-making. This 
research contributes to the evolving field of medical imaging 
by providing a versatile and powerful tool that can be applied 
across a spectrum of modalities, ultimately benefiting 
healthcare professionals in their diagnostic endeavours. 

As future directions, exploring real-world validations, 
optimizing computational efficiency, and adapting the 
framework for domain-specific applications present 
promising avenues for further research. The continuous 
refinement and adaptation of this automated multimodal 
fusion framework have the potential to significantly impact 
the landscape of medical imaging, offering valuable insights 
and improving patient outcomes. 
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