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Abstract: Glaciers are sensitive to climate change, especially the mountain glaciers due to their relatively small size they 

show rapid and fast changes to the ongoing trend of warming in climate. In the Himalayan region, the glaciers serve as 

important source of water for agriculture, power supply and tourism related activities. Glacier velocity gives information 

about the glacier health and helps in understanding the climate change, mass balance, and glacier dynamics. Differential 

SAR Interferometry (DInSAR) is the radar interferometry technique for measuring surface changes with a higher accuracy 

up to millimeter range. Velocity estimates are important to understand the glacier related hazards and can help in alleviating 

the possible future damage downslope. In this study, the velocity of one of the biggest and benchmark glaciers in Zanskar 

region has been estimated using DInSAR technique on Sentinel 1 SLC data. The results show that glacier has moved 

approximately 1m over a period of 12 days.   
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I. INTRODUCTION 

Alpine glaciers are very sensitive to changes in 

temperature regime over short time periods [1]. Mountain 

glaciers, which are generally smaller in size than large ice 

bodies available in polar regions, show higher deformation 

rates (1). Due to the displacement gradient (i.e., strain) 

threshold of Synthetic Aperture Radar Interferometry 

(InSAR), only a limited number of studies [2], [3], [4] have 

successfully measured the ice-flow velocity field with 

InSAR.  

Glaciers move due to their own weight and under the 

influence of gravity. To understand the glacier dynamics 

including mass balance and climatic changes it is essential 

to know the glacier velocity. The instruments that can be 

used for recording and measuring the movement of glaciers 

include stakes and theodolite, laser ranging, and global 

positioning systems (GPS). These instruments allow for 

point measurements only and thus impose a constraint in 

terms of time and cost especially over large inaccessible and 

inhospitable areas. Remote sensing has proved to be 

effective and practical both in terms of time and cost for 

estimation and mapping of the glacier velocity. InSAR is a 

powerful technique for measuring the glacier velocity and 

strain rate (velocity gradient) with centimeter accuracy [5]. 

In this technique, the phase difference of two or more SAR 

images acquired from slightly different orbit positions or 

view angles and at different times is exploited to obtain 

topography and surface change due to earthquake, volcano, 

land subsidence, and glacier velocity mapping.  

Himalayan region, known as Third Pole, houses 

thousands of glaciers and amasses huge seasonal snows. The 

meltwater from snow and glaciers supports a sizable portion 

of agriculture activities and power supply in the densely 

populated Himalayan regions. To forecast the response of 

glaciers and required mitigation of possible hazards to future 

climatic trends the understanding of glacier dynamics 

becomes inevitable. Differential Interferometric Synthetic 

Aperture Radar (DInSAR) technique has potential to 

accurately estimate and monitor the glacier dynamics owing 

to its all-weather usability and penetration capability into the 

upper layers of snow and ice. The penetration depth is 

dependent on wavelength of the incoming signal and the 

higher penetration enhances the correlation between scenes 

which ultimately yields better interferometric results [6]. 

The use of Differential Interferometric Synthetic 

Aperture Radar (DInSAR) for surface displacement studies 

is still in its infancy in India [7]. In the Indian Himalayan 

region, very few glacier dynamic studies have been 

conducted [8], [9], [10], [11]. The surface displacement 

studies are always important and a major issue in Himalayan 

region. To investigate and mitigate the hazards related to 

glacier retreat/ advance, better estimate of the surface 

dynamic behaviour is necessary. 

In this study, Drang-drung glacier located in Zanskar 

Valley has been selected to estimate its velocity using 
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DInSAR technique. The glacier shows a movement of above 

1m over a period of 12 days. 

 

II. STUDY AREA AND DATASET 

A. Study Area  

The study is carried over Drang-drung glacier (Fig.1) 

located in Zanskar Valley of Northwestern Himalayan 

region near the Pensi La mountain pass in the Kargil district 

of Ladakh in India. The climate of Zanskar region is cold-

arid type and mean annual precipitation is 250 mm [12], 

[13]. The elevation of glacier is between 4100-6250m amsl 

[12], [13] and lies between 33.65
0
-33.85

0
 E latitudes and 

76.24
0
-76.37

0
 N longitudes. Drang-drung glacier is the 

second largest glacier in Ladakh region. This glacier is 

mostly debris free and has good accessibility having an area 

of 70.47 sq. km. The meltwater from Drang-drung glacier 

considerably contributes to Zanskar river [12], [13].  

Fig. 1. Drang-drung glacier  

B. Dataset 

The glacier velocity was obtained from two Sentinel-1 

SAR TOPS IW Single Look Complex (SLC) images taken 

on 13 August 2020 (master) and 25 August 2020 (slave) 

using VV polarization. A 30m digital elevation model 

(DEM) from Shuttle Radar Topographic Mission (SRTM) 

was used to produce the differential interferogram and for 

geocoding and coregistering the SAR images. 

 

III. METHODOLOGY 

The data was processed in Sentinel Application Platform 

(SNAP). Two SLC images containing phase and amplitude 

bands were processed to get the precise orbital information, 

containing information about the position of the satellite 

during the acquisition of SAR data. Coregistration of the 

master and slave images based on the orbit information and 

SRTM DEM (30m) was done.  

The interferogram is generated by cross-multiplying the 

master image with the complex conjugate of the “slave.” 

The amplitude of both images is multiplied while their 

respective phases are differenced to form the interferogram. 

The bursts are joined together into a single image using 

TOPS deburst tool in SNAP. The flat-earth phase present 

due to the curvature of the reference surface is estimated 

using the orbital and metadata information and subtracted 

from the complex interferogram using SRTM DEM (30m). 

The interferogram is filtered using Goldstein phase filtering 

that reduces the residues in the interferogram to be used in 

phase unwrapping afterwards [14]. Interferometric fringes 

(Fig. 3) represent a full 2π cycle of phase change. The 

interferometric phase is ambiguous and only known within 

2π. Phase unwrapping (Fig. 4) carried out with SNAPHU, 

solves this ambiguity by integrating phase difference 

between neighboring pixels and gives actual LOS 

displacement. The unwrapped phase product is geocoded, 

and terrain corrected after importing into SNAP and glacier 

displacement is obtained.  

 

 

Fig. 2. Flowchart showing methodology 

IV. RESULTS 

Fig.3 shows the interferogram of Drang-drung glacier 

depicting glacier movement. One cycle of fringe variation 

(cycle of colours) marked in the figure 3, corresponds to 2.8 

cm of movement. As evident in the figure the movement is 

in the snout and at the beginning of the zone of ablation. 

The quality and reliability of unwrapped results strongly 

depends on the input coherence (Fig.5). Reliable results can 

only be expected in areas with high coherence. The glacier 

velocity (Fig.6) ranges from 0.675 to 1.05 m over the 12-

days [15] with highest velocity in the zone of ablation and 

towards the centre (Fig. 3) of the glacier [16], [17]. The 

highest velocity in the centre part just at the beginning of the 

zone of ablation can be attributed to the steep slope and 

gravity. Further research using DInSAR technique supplied 

with sufficient field data will help in validating the results 

obtained. 

 

V. CONCLUSION 

This study provides the characterization of the dynamics of 

the Drang-drung glacier in terms of surface velocity 

estimates from 13 August 2020 to 25 August 2020. Results 

from the DInSAR of Senitnel-1 images revealed significant 

motion along the length of the glacier especially in the zone 

of ablation with a minimum velocity of 0.675m and a 

maximum velocity of 1.05m. Such observations are useful 

in assessing the glacier’s response to climate change and 

provide an avenue to understand glacier dynamics.  
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Fig. 3. Interferogram of Drang-drung glacier. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4. Coherence over the study area 

 
 

Fig. 5. Phase unwrapped interferogram of Drang-drung glacier 

 

 

 

 
Fig. 6. LOS displacement of Drang-drung glacier 
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