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Abstract: As global climate change is affecting the meteorological conditions and instigating massive social suffering, the 

emanation of greenhouse gases is necessitated to be restricted through effective usage of renewable sources of energy as per 

the directions of the Paris treaty of 2015. Wind energy, a renowned renewable energy resource, is enabling countries to 

generate power in a relatively cost-effective way and causes a remarkably nominal carbon trail. A considerable extent of the 

functioning lifespan of wind turbines remains unexploited every year all over the globe because of mechanical malfunctions. 

The existing research strives to evaluate the relative competency of the Genetic Algorithm (GA) and the Moth Flame 

Optimization Algorithm (MFOA) for optimizing the wind turbine generator bearing design through enhancement of its 

static and dynamic load-bearing capacities. The design solutions attained by both of the algorithms validate a noteworthy 

growth of the optimization objectives when contrasted with the technical catalog standards. Moreover, the relative evaluation 

demonstrates the superior aptness of multi-criteria GA on multi-criteria MFOA for finding improved design resolutions.  

Keywords: Wind Power, Wind Turbine Generator Bearing, Design Optimization, Moth Flame Optimization .  

(Article history: Received: 13TH September and accepted 15th December) 

 

I. INTRODUCTION 

Because of the escalating intercontinental anxiety aimed 
at the restrained hoard of non-renewable energy resources 
and their perilous impressions on the biome, renewable 
energy sources impart abounding replacements for the 
electricity generation industry [1].  Wind energy, especially, 
is an imperative and commercial approach for power 
generation [2]. Unswerving strives are on track to lessen the 
aggregate outlay of the wind power generation units as a 
consequence of curbing of the overheads associated with 
functioning and continuance commotions utilizing proper 
preventive and analytical policies [3]. As a result of the 
randomness of wind stream, unstable forces, and shifting 
power necessity, mechanisms of the Wind Turbine (WT) are 
susceptible to premature collapses inducing a sizable 
quantity of changeover expenses and disorders for the 
electricity distribution industry [4]. 

The generator is an essential component of WT and 
amenable to breakdown because of austere functioning 
circumstances and widespread disparity of forces [5]. The 
inoperative period prompted by generator interruption is 
reasonably substantial [6]. The flawed positioning of the 

gearbox and generator because of force function can 
intensify machining of the surface of Wind Turbine 
Generator Bearing (WTGB) [7]. Defects in the appropriate 
functioning of WTGB can be discovered by enhanced noise 
and quivering at the foundation [8]. Additionally, a data-
steered procedure instituted on the sparse depiction and shift-
invariant dictionary knowledge has been endorsed for 
locating inaccuracies in WTGB maneuvering [9]. Machine 
learning has been also utilized for anticipating the 
breakdown of WTGB [10]. Nevertheless, the utilization of 
Artificial Intelligence (AI)-driven multi-criteria design 
optimization of WTGB remained particularly constrained. AI 
techniques have been effectively commissioned in a range of 
industrial realms for optimizing single and multiple goals 
[11-13].  

The present study purposes to improve the design of 
WTGB utilizing bio-motivated algorithms like Multi-
Objective Genetic Algorithm (MOGA) and Multi-Objective 
Moth Flame Optimization Algorithm (MOMFOA) 
concurrently. The accomplished resolutions have been 
contrasted with trade catalog standards.  



 
ADBU-Journal of Engineering Technology 

 

 

Bhattacharjee, AJET, ISSN: 2348-7305, Volume10, Issue4, December, 2021 0100402599(5PP) 2 
 

II. PROBLEM STATEMENT  

Because of the aptness to undergo varied functioning 
states and intense rotating pace, the deep groove ball 
bearings are employed in a WT generator [14]. WTGB is 
necessitated to be fabricated to lower the mechanical 
resonance directing to untimely failure [15]. 

A. Objectives  

The goals taken into account in the existing paper are 
expanding the static and dynamic capacities of the WTGB. 
The correlated functions have been concisely explained in 
the succeeding segments. 

1. Static Capacity (Cstatic) 

The static load-withstanding capability is specified as the 
load operational on a motionless bearing that may impact the 
persisting disfigurement materializing at the spot of the 
topmost-loaded rotating constituent [16]. The static 
competence of the inner conduit can be formulated as per (1). 
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 In (1), z signifies the number of rotating constituents, i 
symbolizes the number of rows, Db denotes the diameter of 
the rotating component, ai* indicates the semi-major axis for 
the interior conduit, bi* represents the semi-minor axis for 
the inner race, α indicates the contact angle, and fi signifies 
the interior curvature parameter [16]. The static ability of the 
exterior race can be stated as per (2) [16]. 
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 In (2), ao* characterizes the semi-major axis for the 
outside race, bo* designates the semi-minor axis for the 
exterior conduit, and fo symbolizes the peripheral curvature 
parameter [16]. γ can be calculated as per (3) [16]. 

     
      

  
 (3) 

 In (3), Dm depicts the pitch diameter. The static load 
enduring capability can be computed as per (4) [16]. 

                                                   (4) 

2. Dynamic Capacity (Cdynamic) 

Dynamic load sustaining competence is indicated as the 
invariable radial load that a range of noticeably alike 

bearings is able to endure for a review lifetime of one 
million rolls of the interior conduit [16]. It  can be computed 
as per (5). 
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In (5), fc is a geometry-linked co-efficient reliant on fi, 
fo, and γ. 

B. Constraints 

The WTGB operated for 1.5 MW WT has been 
considered in the current study. Any standard engineering 
optimization problem is commonly related to one or several 
restraints. The constriction functions endorsed by Duggirala 

et al. [12] have been employed in the current work. They 
have been expressed in the following way. 
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In (6), θ denotes the assembly angle. 
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In (7) and (8), κD1 and κD2 are geometry-linked factors 
varying between 0 and 1. D1 and D2 denote the external and 
internal diameter respectively.  

          (9) 

In (9), δ is a non-negative and non-zero fractional 
parameter and B is the bearing width. 

                     (10) 

                     (11) 

In (10) and (11), φ is a non-negative and non-
dimensional parameter. 

                     (12) 

In (12), ε is a non-zero fraction. The variable value 
restraints have been presented in the following manner. 

         (13) 
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III. OPTIMIZATION ALGORITHMS 

In the present study, the enhancement of the static and 
dynamic load enduring capacities for WTGB has been 
endeavored to apply MOGA and MOMFOA to assess their 
comparative efficacy. The optimization algorithms have 
been succinctly explicated in the subsequent segments. 

A. Multi-Objective Genetic Algorithm (MOGA) 

Genetic Algorithm is designated as an AI-emboldened 
searching method to suggest solutions for optimization 
tryouts by simulating the stratagem of biologic inclination 
respecting the plan of Turing to form a ‘wisdom device’ 
approximating the logic of evolution [17]. The MOGA to 
recognize non-subdued outcomes for multi-criteria design 
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optimization of WTGB has been depicted in the following 
manner [11,13]. 

1. Organize different parameters allied to MOGA like 
populace magnitude, peak repetition count, 
percentages for crossover, and mutation techniques. 

2. Form an introductory populace arbitrarily. 

3. Examine the suitability of all chromosomes. 

4. Employ the crossover system in the subsequent 
means. 

4.1 Pick out the chromosomes for the crossover 
scheme. 

4.2 Activate the crossover system. 

4.3 Authenticate the possibility of the descendants. 

4.4 If the posterities are operable, amalgamate 
them into the new generation. 

5. Complete the mutation technique in the subsequent 
means. 

5.1 Elect the chromosomes for mutation activity. 

5.2 Instigate the mutation method. 

5.3 Verify the attainability of the recently produced 
chromosomes. 

5.4 If the generated chromosome is attainable, 
combine it into the latest generation. 

6. Appraise the aptness of the novel chromosomes 
shaped by crossover and mutation measures. 

7. Apply the preeminence valuation.  

8. If the satisfactory count of chromosomes critical for 
Pareto optimal front composition has been realized, 
conclude the procedure, else restart. 

9. Identify the extremely venerable outcome in 
proportion with the appraiser’s prejudice. 

The flowchart of MOGA is presented in Fig. 1 [11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. MOGA Flowchart 

B. Multi-Objective Moth Flame Optimization Algorithm 
(MOMFOA) 

Mirjalili [18] recommended the moth flame optimization 
algorithm replicating the path tracing of the moths. It has 
been engaged in plentiful industrial fields for optimizing 
diverse objectives [19-21]. MOMFOA has been pithily 
articulated as follows. 

1. Arrange the elementary factors for MOMFOA such as 
moth populace and flame sites. 

2. Create the initial moths at random. 

3. Examine the fittingness for moth distinctly. 

4. Modify the flame worth, moth positions, and merger 
proportion. 

5. Inspect the interim space within a moth and its 
compatible flame. 

6. Adjust the population of moths. 

7. If the ending standards have been achieved, conclude 
the procedure, else return to step 3. 

8. Enlist the acclaimed states of the moths. 

The architecture of MOMFOA has been shown 
graphically in Fig. 2 [22]. 
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Fig. 2. MOMFOA Flowchart 
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IV. RESULTS AND DISCUSSIONS 

In the current optimization process, a population 

magnitude of 300 has been deemed for both algorithms. The 
optimization processes have been repeated for 300 epochs. 

The static and dynamic competencies of the WTGB have 
been measured in kN. The Pareto fronts achieved applying 
MOGA and MOMFOA have been displayed in Figs. 3 and 4 
respectively. 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

 

 

Fig. 3. Pareto Front Attained by MOGA 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Pareto Front Attained by MOMFOA 

The optimal results attained by MOGA and MOMFOA 
have been shown in Table 1. 

TABLE I.  COMPARISON OF OPTIMAL RESULTS 

 Highest Static 

Capacity (in kN) 

Highest Dynamic 

Capacity (in kN) 

Catalogue 

Standard  

280 360 

MOGA 

Results 
313.6514 556.1527 

MOMFOA 
Results 

340.6390 756.7605 

The graphic representation of the optimization solutions 
attained using MOGA and MOMFOA validate the 
noteworthy enhancement of static and dynamic load 
enduring capacities of WTGB for both algorithms. 
Moreover, the comparative analysis of Pareto optimal fronts 
achieved by both the algorithms verify that MOMFOA 
offers more optimal design solutions than MOGA for every 
considered objective.  

V. CONCLUSION 

Generator Bearing is a vital apparatus of WT and liable 
for the untimely malfunction leading to a loss in operational 
life. In the present paper, AI-empowered procedures like 
MOGA and MOMFOA have been engaged concurrently to 
enhance the design of WTGB. Optimization solutions 
validate a significant increase in static and dynamic load-
bearing capacities for both algorithms. The relative study 
confirms the superior suitability of MOMFOA over MOGA 
for optimizing the design of WTGB.  

This research can originate pioneering potentials for 
more WT devices to lessen the losses in effective phase and 
commercial return owing to mechanical breakdowns by 
adroitly improving their preventive design scheme. The 
application arena can be broadened to more renewable 
energy generation fields with the utilization of more AI 
procedures. 
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