

ADBU-Journal of Engineering Technology

Shah, AJET, ISSN: 2348-7305, Volume10, Issue 2, July, 2021 0100200377(7PP) 1

 Self-Driving Car
A Deep-Learning Approach

1Rutvik Shah

UG Student, Computer Dept,
BVM Engineering College,

V.V.Nagar, India.
rutvik2309@gmail.com

 2Mit Patel

UG Student, Computer Dept,
BVM Engineering College,

V.V.Nagar, India.
mitbpatel0128@gmail.com

 3Mayank Budhwani

UG Student, I.T Dept,
BVM Engineering College,

V.V.Nagar, India.
mayankbudhwani@gmail.com

 4Ketan Upadhyay

 Technical Director,
 Access Computech Pvt Ltd,

 Vadodara, India
 ketan@acpl.ind.in

 5Dr. Zankhana H. Shah

Professor, I.T Dept,
BVM Engg College,

V.V.Nagar, India
zankhana.shah@bvmengineering.ac.in

 6Dr. Narendra M. Patel

 Professor, Computer Dept,
 BVM Engineering College,

 V.V.Nagar, India.
 nmpatel@bvmengineering.ac.in

7Dr. Darshak G. Thakore

Head, Computer Dept,
BVM Engineering College,

V.V.Nagar, India.
dgthakore@bvmengineering.ac.in

Abstract: Nowadays self-directed learning and automation are not restricted to human beings only. If you stare out at the

automotive horizon, you can see a new exciting era coming into limelight: the age of self-driving cars. An age when humans

will no longer need to keep their eyes on the road. No more concerns about distraction while driving or those stressful rush

hour commutes, vehicles will whisk us where we want to go, blazingly fast and efficiently. This paper aims at demonstrating

a system, which is able to drive a car on road without any human input. Both software and hardware parts are discussed

here. The vehicle would contain certain sensors such as GPS, Ultrasonic Sensor, Camera and would contain an on-board

computer for decision making. Waypoint data would be obtained from a nav provider like Google Maps. All of it would be

simulated in CARLA, an open-source simulator.

Keywords: deep learning, neural networks, image processing, route planning, self-driving car.

 (Article history: Received: 6
th

 February 2021 and accepted 17th May 2021)

I. INTRODUCTION

The idea of self-driving cars is a little dated, but its
only in recent times that it has come anywhere near to
being properly implemented. Companies like Google,
Tesla, Waymo are involved in the research of self-driving
cars and are even selling it commercially. Although the
system is not perfect, it will soon be, with reducing
hardware costs, increasing compute power and
development in Deep Learning algorithms.

This system aims at demonstrating a full-fledged self-
driving car, with a complete demonstration in software and
a limited demonstration in hardware. The car would have
all necessary features required for safely driving on a
crowded street, such as object detection, traffic signal
detection, maps integration and emergency stop.

II. LITERATURE SURVEY

While implementing this system, we have used some
already existing algorithms which are not developed by us.
A summary of some of these algorithms is provided below.

A. Canny Edge Detection [1]

This algorithm is used for detecting various edges
(sudden changes in gradient) in the image. The Canny
filter is a multi-stage edge detector. It uses a filter based on
the derivative of a Gaussian in order to compute the
intensity of the gradients. Then, potential edges are thinned
down to 1-pixel curves by removing non-maximum pixels
of the gradient magnitude. Finally, edge pixels are kept or
removed using hysteresis thresholding on the gradient
magnitude.

B. Hough Transform [2]

The Hough transform is a method which can be used to
extract features of a particular shape within an image, in
this case, the lane lines. While edge detection helps in

ADBU-Journal of Engineering Technology

Shah, AJET, ISSN: 2348-7305, Volume10, Issue 2, July, 2021 0100200377(7PP) 2

reducing the data in an image considerably, the output of
an edge detection algorithm is still an image.

Hough transform translates the points from the given
image into Hough space and then determines the lane lines
by finding which points lie on straight lines, and also gives
the equations for said lines. The equations make it much
easier to interpret the lane lines, compared to images.

C. Object Detection Algorithms

Several object detection algorithms were studied in
order to find the most accurate algorithm for this
application. Traditional CNN is not viable to use for object
detection due to the huge computational load. R-CNN
(Region-based CNN) [3] reduces the number of regions to
just 2000 using selective search, but it is still not real-time,
taking around 47 seconds per image. Fast R-CNN [4] is an
improved version of R-CNN as it feeds input image to
CNN to generate convolutional feature map. But selective
search still consumes too much time in this algorithm.
Faster R-CNN [5] improves further on Fast R-CNN, as
instead of using selective search algorithm on the feature
map to identify the region proposals, a separate network is
used to predict the region proposals.

You only look once (YOLO) [6] is an object detection
system targeted for real-time processing. YOLO has better
performance compared to other algorithms and good mean
average precision, and it predicts all objects in a single
pass with locations. Image is divided into grids and each
grid is responsible to find objects. A single CNN predicts
multiple bounding boxes and also their class probabilities.
After non-max suppression, it outputs the boxes with their
most probable class. YOLO uses a network involving 106
layers. The basic network structure of YOLOv3 is shown
in Fig. 1.

Fig. 1: YOLOv3 Model [6]

D. Transfer Learning

Transfer learning is a technique to use existing
knowledge for solving another similar problem. Generally,
this strategy is being considered while dataset is limited,
and accuracy is also matter in final outcome. One model is
trained using big dataset that is called pre-trained model
and people use that model to fulfill their requirements. Pre-
trained models have defined weights value which helps to
get good accuracy with lesser loss. Here, model training is
performed using new dataset.

Fig. 2: Block Diagram of Transfer Learning [7]

E. Model Predictive Control

The main idea of MPC is in the robustification of
physical control processes under uncertainty carried-out in
an online manner. Model Predictive Control (MPC) can be
used, in this system, to calculate the actuator values for the
car. The control action is obtained by minimizing an
objective function at each time step over a finite horizon
subject to the equations and constraints of the model. The
major advantage of MPC is its straight-forward design
procedure. Given a model of the system, including
constraints, one only needs to set up an objective function
that incorporates the control objectives.

Fig. 3: MPC Controller [8]

III. PROPOSED METHODOLOGY

Fig. 4: System Design

The system involves various sensors to collect real-
time information about the driving environment. Further,
the collected data is processed to extract useful
information. Based on the extracted information, the
vehicle’s route is planned in order to drive the vehicle
safely and to reach destination from source. Further, based
on this determined route, the controllers will actually
determine the vehicle parameters (eg. steer, throttle, brake)
so as to actually drive the vehicle on the said route.

Sensors

• Camera

• GPS

• Others

Perception

• Object Detection

• Traffic Sign Detection

• Object Tracking

• Localization

Planning

• Route Planning

• Trajectory Prediction

• Behaviour Planning

Control

• PID

• MPC

• Others

ADBU-Journal of Engineering Technology

Shah, AJET, ISSN: 2348-7305, Volume10, Issue 2, July, 2021 0100200377(7PP) 3

IV. IMPLEMENTATION AND RESULTS

The pipeline of our system along with brief module
breakdown can be summarized by Fig. 5.

Fig. 5: Implementation Pipeline

In this section, various modules of the system are
discussed in detail, along with the results obtained from
the implementation of these modules.

A. Lane Detection

Identifying lane lines on the road is a pretty common
task performed by all human drivers to ensure their
vehicles are inside lane constraints when driving, so as to
make sure smoother traffic and to avoid chances of
collisions with other objects due to lane misalignment.
Similarly, it is a most crucial task for an autonomous
vehicle to perform. Eventually recognizing lane markings
on roads is possible using state of the art computer vision
techniques.

1) The pipeline [9]

Lane-detection is not a single-shot process. When
performing lane detection in images, the image needs to
passed through multiple transformations in order to obtain
an accurate position of the lane lines in the given image.
This system uses a standard proven lane detection pipeline,
involving color space conversion, Canny Edge Detection
and Hough Transform.

B. Object Detection

Object Detection is essential for a self-driving system.
Images are used to detect objects and their classes. Object
detection is part of the Vision system and it is important to
recognize obstacles on the road. It helps us to plan the
path of our vehicle as we can track motion of surrounding
objects. YOLO algorithm is used for detecting
surrounding objects such as cars, pedestrians etc.

Fig. 10: Object Detection

C. Traffic Sign Detection

Every country has its own set of rules and regulations.
There are many traffic rules in the world but the sign and
its meaning is deferring according to the province. Traffic
signs play an important role in driving so vehicles must be
moved accordingly. Indian traffic rule book has ninety
traffic signs but only 27 signs are implemented for this
project.

1) Transfer Learning using YOLOv3

HyperLabel was used to create a dataset involving
various traffic lights and signs and label them. After
creating the dataset the model was trained on cloud (Tesla
K80).

Model was trained for 220 epochs, because the error
had sufficiently declined by that point. This model
predicts many signs in one image so for better
performance we made an algorithm. The algorithm is
made in such a way that it finds specific traffic signs in
the picture. Loss of the model is 4.173. Model accuracy
was 0.91.

2) Non-Maximal Supression

This model generates images which have many
bounding boxes on detected objects. This step filters out
all other bounding boxes and only keep that box whose
class probability is maximum.

Lane
Detection

• Colorspace
Conversion

• Canny Edge
Detection

• Hough
Transform

Vision
System

• Image
Segmentation
(YOLOv3)

• Traffic Sign
Detection

• Aerial View

• Object Tracking

Path
Planning

• Global Path
Planning

• Behaviour
Planning

• Optimal
Trajectory
Generation

Motion
Planning

• Model
Predictive
Control

Fig. 11: Traffic Signs
Detected

Fig. 12: After Non-max
Suppression

Fig. 6: RGB Image Fig. 7: Grayscale Image with
Extracted Lane Lines

Fig. 8: Canny Edge Detection Fig. 9: Detected Lane Lines

ADBU-Journal of Engineering Technology

Shah, AJET, ISSN: 2348-7305, Volume10, Issue 2, July, 2021 0100200377(7PP) 4

D. Aerial View

The vehicle has multiple cameras pointing in all
direction. A six-camera system was used in this case for
data collection. After that, a neural network was
implemented to reconstruct the aerial (top down view). An
aerial view has several advantages as it combines useful
information from multiple camera angles into one and can
be used for local path planning.

1) Dataset Collection and Preprocessing

The model was trained on semantically segmented
images gathered in the default town available in CARLA
(Town02), 40 episodes, each episode 1000 frames long.
For validation and testing, separate episodes were used.
The image shape used was 144 x 96.

Fig. 13: Semantic Segmentation in Carla

There are total 12 categories of objects in Carla and
for ease, it was decided to split it out into 3 categories
(roads, road lines), (vehicles), (everything else).

2) Training

The model architecture designed for obtaining aerial
view is shown in Fig. 14.

 Fig. 14: Network Architecture

In this setup training took ~10hrs on Tesla P100.
Inference on same machine takes 3.8ms (checked in real-

time via synchronous mode). However, in reality (RGB
image to segmented image) some time would also be
required to obtain segmented image. Loss of said model
was 0.061 on validation set.

Fig. 15: Top View Comparison between Ground Truth and
Prediction

The rightmost top down view was obtained by taking
an argmax of the predicted class probabilities. This
approach has a detrimental drawback: at edge cases the
cars seem to be re-emerging out of the blue, even though
actually the predicted probability for their class is not
void.

3) Object Tracking in Aerial View

After predicting top view, we have extracted pixels
with higher car class probability. In order to find disjoint
clusters of car, flood fill algorithm was used to extract out
group of connected pixels. In Fig. 16 black dots are
representing centroid of each cluster.

Finally, to get an extra edge, we can track motion of
these objects by assigning them unique id. However, we
have to solve multiple issues, starting from duplicate
detection to random reappearance of an object. We have
used SORT (Simple Online and Realtime Tracking)
algorithm [10] which is most commonly used in object
detection algorithms for tracking surrounding objects and
it requires only bounding box information of detected
objects. In Fig. 16, bounding boxes corresponding to id
are results of SORT algorithm.

Fig. 16: Tracking of Cars using Unique ID

ADBU-Journal of Engineering Technology

Shah, AJET, ISSN: 2348-7305, Volume10, Issue 2, July, 2021 0100200377(7PP) 5

E. Local Path Planning

Local path planning is the process of planning out the
path of the vehicle in order to avoid other objects, switch
lanes, overtaking, making turns and so on. It is a very
complex task as it involves sensor data, localization and
prediction.

Planning a path that is both safe and efficient is one of
the hardest problems in the development of an
autonomous vehicle. In fact, this step, known as Path
Planning, is still an active area of research. The reason
why Path Planning is such a complex task is because it
involves all components of a self-driving vehicle, ranging
from the low level actuators, the sensors which are fused
to create a “snapshot” of the world, along with the
localization and prediction modules to understand
precisely where we are and what actions different entities
in our world (other vehicles, humans, animals, etc.) are
more likely to take in the next few seconds.

1) Core Logic

We humans transition our vehicle into different states
based on our driving style, outside information and
destination. We can codify states for machines and
instruct them which states they could move to. In this
case, the finite state machine is quite straightforward and
illustrated below:

Fig. 17: FSM of Local Path Planning

2) Waypoints Generation using Aerial View

Now, the truth is we only three classes are required to
be able to drive around and not collide with others: road,
vehicles, everything else.

Fig. 18: Path Planning based on predicted Top View

The white dots denote the waypoints of the path
planning procedure. The path is found using a greedy
algorithm that scans a range of possible waypoints, takes a
sphere centered on a given waypoint, and calculates the
“average road” for that sphere. Then, the waypoint with
the highest “average road” is chosen, and the procedure is
repeated. This component generates waypoints which can
be followed by standard controller such as MPC, PID etc.

3) Trajectory Models

This module is responsible for generating accurate
trajectory based on ego car’s current position, which is
then supplied to the controller. We have considered first
10 waypoints from the position of our vehicle and to get
rid of random gaps between these points, they are fit onto
a curve using spline interpolation [11] as it uses piecewise
construction.

F. Motion Models

We created two types of controllers – a PID and a
MPC controller. A PID controller [12] continuously
calculates error value and applies a correction based on
proportional, integral and derivative terms. However, a
PID controller is inconsistent and may result in abnormal
driving behavior in certain conditions. Hence, we decided
to use MPC for this project, which is a better controller
which involves much more parameters than a PID
controller.

MPC predicts the next action by taking advantage of
viewing the results of a longer future plan (1 sec). In our
example, we use waypoints generated by path planner to
fit a 3-rd order polynomial function, which is used to
compute y-coordinate and heading.

 ()

 ()

Next, we will define a dynamic model for predicting
the car’s state at time t+1 from the last state at time t.
Using the kinematic bicycle model, we can deduce the
location, the heading direction and the speed from the last
state. In addition to that, we have added 2 more states to
measure the cross-track error and the heading error for ψ.

 ()

 ()

 () ()

Finally, we define a cost function to optimize our
path with the trajectory. In our model, our cost includes

ADBU-Journal of Engineering Technology

Shah, AJET, ISSN: 2348-7305, Volume10, Issue 2, July, 2021 0100200377(7PP) 6

CTE, heading error, speed error, steer error, acceleration
cost, steering rate change and acceleration rate change.

Fig. 25 shows output of MPC for 1 step which
includes actuator values of 10 time-steps separated by 0.1
seconds. We have also compared reference trajectory
(generated by path planner) and predicted trajectory
(MPC) in this figure.

Fig.19: Snapshot of MPC's Action Plan

Apart from following trajectory very accurately we
have noticed MPC gives clear idea about what vehicle
should do.

G. Global Path Planning

A global route planner guides the vehicle regarding
which route to follow in order to reach the destination
from the source. Detailed implementation of a global
route planner is out of the scope of this paper. A basic
global route planner works by interpreting the map as a
graph, in which vertices represent various positions in the
map, and then calculating shortest valid path between two
points.

Fig.20: Route Calculated by Global Planner

H. Hardware Based Implementation

In order to demonstrate the abilities of the created
models and controllers, a limited version was
implemented on a small hardware model car build using a
Raspberry Pi. The system for hardware-based
implementation is similar to that of simulator approach.

Fig. 21: Hardware Approach

1) Differential Drive Control

The differential drive is a two-wheeled drive system
with independent actuators for each wheel. The difference
between voltages supplied to motors at both sides makes
car turn to a certain radius either right or left.

Fig. 22: Differential Drive Control [13]

2) PWM – for controlling speed [14]

The speed of a DC motor can be controlled by varying
its input voltage. A common technique for doing this is to
use PWM (Pulse Width Modulation), where average
voltage value is adjusted by sending a series of pulses.
The average voltage is proportional to the width of the
pulses known as Duty Cycle.

3) From Software to Hardware

Since the hardware model contains a single camera, it
is capable of performing lane detection. The camera is
mounted on the front of the car and will detect lanes and
according to it determine the center line and try to drive
the car on it.

Some examples of detected lanes:

 Using this technique, it is possible to detect lanes.
After detecting lanes, the steering angle can easily be
calculated. If only one lane is visible, the car tries to steer

Fig. 23: Lanes Detected by Hardware

ADBU-Journal of Engineering Technology

Shah, AJET, ISSN: 2348-7305, Volume10, Issue 2, July, 2021 0100200377(7PP) 7

in the opposite direction till the other lane becomes
visible.

However, there are some implementation-related
issues. Due to a lack of high-speed camera, clear images
in motion cant be captured. Which may lead to the
algorithm not working in some cases. To continuously
drive the car accurately in lane, multiple high-speed
cameras need to be mounted on the vehicle.

The next step would have to be object detection.
However, object detection would not be possible with the
limited compute capabilities of a Raspberry Pi. Object
detection algorithms are very compute-extensive, and
hence not possible to implement on a model. Cloud
processing also has extreme latency issues. An ultrasonic
sensor is used on the model to implement emergency-stop
and to detect other objects in front. Most such applications
use an on-board high-performance computer for
processing tasks and decision-making tasks.

V. CONCLUSION

The idea of self-driving cars does not seem so distant
anymore. With ever-increasing compute power and more
powerful deep learning algorithms emerging, self-driving
cars will soon become much more accessible to everyone.

While implementing this project, some issues arose
such as lack of compute power, requirement of high-speed
cameras and sensors such as LIDAR for better recognition
of surrounding, limited availability of open-source tools
for simulating a driving environment, inaccurate detection
of some traffic signs such as stop sign, red light due to
limited dataset size, etc. For example, in this
demonstration(hardware) the vision system runs a little
slow due to limited compute power of a single-board
computer such as Raspberry Pi. However, most issues are
easily solvable with the proper hardware. Over time, it’s
likely that the improvements in self-driving cars make
manually driven cars obsolete.

REFERENCES

[1] Y. Open CV Tutorials, “Canny Edge Detection Tutorial”,
https://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_canny
/py_canny.html

[2] University of Edinburgh “Hough Transform”,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm

[3] Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik “Rich
feature hierarchies for accurate object detection and semantic
segmentation Tech report (v5)”, 2014 IEEE Conference on
Computer Vision and Pattern Recognition

[4] Ross Girshick. “Fast R-CNN” 2015 IEEE International Conference
on Computer Vision (ICCV)

[5] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun “Faster
R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks” June 2015 IEEE Transactions on Pattern
Analysis and Machine Intelligence

[6] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi “You
Only Look Once: Unified, Real-Time Object Detection”, 2016
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR)

[7] Sebastian Ruder, Matthew E. Peters, Swabha Swayamdipta,
Thomas Wolf “Transfer Learning in Natural Language
Processing”, Jun 2019

[8] A. Giovanni Beccuti, Manfred Morari, “Analysis and Design of
Hybrid Systems”, 2006

[9] Nachiket Tansksale “Finding Lane Lines – Simple Pipeline for
Lane Detection”, https://towardsdatascience.com/finding-lane-
lines-simple-pipeline-for-lane-detection-d02b62e7572b

[10] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, Ben
Upcroft “Simple Online and Realtime Tracking”, Feb 2016

[11] Steven Chapra, Raymond Canale “Numerical Methods for
Engineers”, McGraw Hill Education, May 2010

[12] Paul Avery “Introduction to PID Control”
https://www.machinedesign.com/automation-
iiot/sensors/article/21831887/introduction-to-pid-control

[13] Society of Robots “Programming – Differential Drive”
https://www.societyofrobots.com/programming_differentialdrive.s
html

[14] Dejan “Arduino DC Motor Control Tutorial – L298N | PWM | H-
Bridge” https://howtomechatronics.com/tutorials/arduino/arduino-
dc-motor-control-tutorial-l298n-pwm-h-bridge/

AUTHOR PROFILES

 Rutvik Shah
UG Student, Computer Department,
BVM Engineering College,
V.V.Nagar, India

 Mit Patel
UG Student, Computer Department,
BVM Engineering College,
V.V.Nagar, India

 Mayank Budhwani
UG Student, I.T. Department,
BVM Engineering College,
V.V.Nagar, India

 Ketan Upadhyay
Technical Director,
Access Computech Pvt Ltd,
Vadodara, India

 Dr. Zankhana H. Shah
Associate Professor, I.T. Department,
BVM Engineering College,
V.V.Nagar, India

 Dr. Narendra M. Patel
Associate Professor, Computer Department,
BVM Engineering College,
V.V.Nagar, India

 Dr. Darshak G. Thakore
Head, Computer Department,
BVM Engineering College,
V.V.Nagar, India

