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Abstract:Query optimization has been a research hot topic since the 70’s. Still today new methods 

are introduced to optimize queries since the problem is NP-hard in nature. There exist multiple ways 

to execute the same query and the search space increases exponentially with increase in complexity of 

queries. Even the accepted methods are inadequate to optimize present day complex queries. In this 

paper, we propose a model based on Genetic programming to optimize such queries. We briefly 

explain the functioning of Genetic Algorithms and Genetic Programming and try to establish a strong 

base that supports application of Genetic Programming approach to query optimization. 
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1. INTRODUCTION 

Query is an instruction to the database system issued by an 

end user to obtain a required output/answer. Queries act as 

the sole medium for the end user to interact with the database 

system either to store data or retrieve data and/or 

information. Queries can be as simple as ―Find the average 

salary of all the employees working in an organization‖ or 

quite complex as ―Find the internet usage log of all the 

employees working in New York branch of an organization 

whose annual salary is greater than $100000‖. The quality of 

performance of a DBMS is highly determined by its ability 

to provide the response to a particular query within the least 

time possible. This activity of optimizing the query to 

provide required output accurately and in the least possible 

time is termed as Query Optimization [1,6,7,8]. But the 

Query Optimization is in itself a NP-hard problem. Why? 

Let‘s try to understand with the help of an example. 

Suppose, a user wants to find out the names of employees 

working in finance department of an organization. So, he 

issues a query to the DBMS in the form of a high level query 

language such as SQL. So, the query he issues is 

SELECT Name from Employees Where Department = 

‘Finance‘ 

 The DBMS has a module called the Parser and Translator 

which checks the query to identify any syntax or semantic 

errors. The query is then translated to low level algebraic 

relational expression. There can usually be two or more 

equivalent expressions for the same query. All equivalent 

algebraic expressions produce the same output but might 

differ in the cost required in terms of disk I/O accesses, CPU 

time, memory buffer and transmission time (in distributed 

DBMS). The above query can be translated into two 

equivalent algebraic expressions as follows 

a). σ Department=‘Finance‘ (π Name, Salary (Employee)). 

b). Π Name (σ Department = ‗Finance‘ (Employee)). 

This can also be represented in terms of trees known as parse 

tree or query tree. It represents the order in which query is 

evaluated by the Query Evaluation Engine. Figure (1) shows 

two equivalent query trees of the above query. These 

equivalent query trees are also called the Query Evaluation 

Plans (QEP) which are then fed to the Optimizer module of 

the DBMS. The task of the Optimizer is to find the best 

query plan which satisfies the condition 

Cost (QEPBest) = min(Costs of all QEPs ) 

That is, the QEP that utilizes the least time in providing the 

required output to the submitting user of the query. All the 

QEPs together form the search space for the optimizer. 

 

 

 

 

 

We can clearly see that such a simple query as the above one 

has two query evaluation plans, consider the case where the 

required answer can only be obtained by joining 

records/tuples from multiple TABLEs. For N relations 

involved in such join queries, N! equivalent QEPs to solve 

the problem can be obtained by applying commutative and 

associative laws for joins. Figure (2) shows a graph 

illustrating the variation in QEPs with change in number of 

relations involved in join. In modern Engineering and 

Artificial Intelligence databases, such join queries involving 

large number of relations is common and hence the search 

space increases exponentially. Moreover, toggling between 

the different join algorithms and/or considering bushy trees 

over linear trees further increases the search space 

exponentially. An exhaustive or deterministic search of such 

a large space to find the best solution is impractical as it 

increases the optimization time drastically and subsequently 

increases the computation time of the query. A randomized 

search of the search space in such a scenario would be a 

more optimal strategy. Such a search strategy reduces the 

search space by random selecting QEPs and from amongst 

these selects a QEP which might not be the best but one with 

cost quite similar to the best one. Here, though the best QEP 

Figure2: Query trees corresponding to above query 
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might not get selected but the search approach significantly 

reduces the optimization time and hence improves the 

computation time of the query. 
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Evolutionary Algorithms, more specifically, Genetic 

Algorithms have often proved to be high performing in such 

NP-hard optimization problems. So, in this paper, we seek to 

explore the possibilities of optimizing the query by following 

a Genetic Programming Approach which is an extension of 

Genetic Algorithms.   

The rest of the paper is organized such that Section 2 and 

Section 3 briefly describe the Genetic Algorithm and Genetic 

Programming paradigms respectively. In Section 4, we 

propose a model to apply Genetic Programming to optimize 

queries. Section 5 concludes the discussion with insights into 

future research and scopes. 

2. Genetic Algorithm 

Genetic Algorithms [2] belong to the family of Evolutionary 

Algorithms and are inspired by the Darwinian principle of 

“Theory of Evolution”. According to this theory, from a 

population of individuals, only those individuals possessing 

essential characteristics for survival are deemed fit to survive 

the competition for existence. These individuals get an 

opportunity to mate with other surviving individuals to 

produce offspring that possess the characteristics to survive 

and hence form the population for the next generation. Some 

of the individuals undergo some degree of mutation to 

produce possibly better (or worse) individuals to participate 

in the next generation. In this way, generation after 

generation, the individuals get better and better. Genetic 

Algorithms are inspired by this Evolutionary phenomenon 

and are believed to be very efficient in solving NP-hard 

optimization problems.  

The set of possible solutions to the problem serve as the 

initial population space for the genetic algorithm. The quality 

of each individual is determined by a fitness function. The 

more fit individuals are selected to form the first generation. 

These first generation individuals mate with each other in the 

form of crossover to produce offspring that have the fit 

characteristics from both the parents and are expected to be 

more or equally fit as their parents. Crossover is generally 

the exchange of characteristics between two (sometimes 

more) individuals. Some of less fit individuals of first 

generation undergo mutation which signifies change in some 

of the characteristics of the individual. Usually, inversion of 

characteristics such as flipping of bits from 0 to 1 and vice-

versa is what actually happens in mutation. So, by 

convention it is expected that weaker individuals undergo 

more mutation than relatively strong individuals in hope to 

produce an individual fitter than the one undergoing 

mutation. Similarly, strong individuals have higher 

probabilities to participate in crossover with an expectation 

that the offspring produced as a result of exchange of strong 

characteristics between parents will have fitness value 

greater than the parents. These new individuals generated 

through crossover and mutation along with some of the 

fittest individuals from current generation form the second 

generation. This cyclic process of fitness evaluation, 

selection, crossover and mutation continues until a stopping 

criterion is matched. This last generation is comprised of 

individuals that represent the best solutions to the given 

problem.  

Suppose, we want to generate 8-bit long binary strings which 

consist of maximum number of 1‘s. Let‘s apply genetic 

algorithm to find some optimal solution to the problem. The 

steps involved in this process are as follows 

a) Encoding: The first step is to define the structure of the 

individuals or possible solutions. We represent the 

individuals as strings of length 8. This string is also called a 

chromosome which is made up of eight bits or genes. Each 

gene either has a value of 1 or 0. Figure (3) shows two 

chromosomes. 

 

 

 

 

 

 

b) Fitness function: Since our aim is to find solutions 

containing maximum number of 1‘s, so our fitness function 

assigns a fitness value to each of the individuals which is 

equal to the number of 1‘s in the chromosome. The 

chromosomes shown in Figure (3) have fitness values of 4 

and 6 respectively. 

c) Selection: There are many selection methods available 

which have been thoroughly discussed in [2] and [3]. For our 

problem, we select the chromosomes randomly from the 

initial population which is comprised of random 8-bit long 

binary strings. 

d) Crossover: There are various crossover operators 

available as described in [2] and [3]. Out of these, we use the 

two-point crossover for illustration in our problem domain. 

In two-point crossover, two points (bits or genes) in the 

string are selected and all the bits in between these two 

points (inclusive) are exchanged between the two 

participating chromosomes to produce two offspring. Either 

Figure3: Graph showing change in QEP with increase in 

number of relations involved in join 

Figure4: Two chromosomes representing two possible 

solutions 
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one or both or none of the individuals are selected to 

participate in the next generation depending on their fitness 

values. Figure (4) shows the crossover between two 

relatively strong chromosomes of the above stated problem. 

The crossover produces one offspring with fitness of 8 which 

is greater than both its parents. Thus, we can see how 

crossover can result in production of fitter individuals in the 

process. 

 

 

 

 

 

 

e) Mutation: Similar to crossover, many mutation operators 

have also been discussed in [2]. We use the one-point 

mutation in our problem domain. In one-point mutation, a 

random bit or gene in the chromosome (string) is selected 

and all the bits after that bit (inclusive) are flipped or 

inverted e.g. 0 to 1 and vice-versa. Figure (5) shows the one-

point mutation being applied to a relatively weaker 

chromosome to produce a stronger individual. 

 

 

 

 

 

 

f) Stopping Criterion: The new individuals produced as a 

result of crossover and mutations are then selected to form 

the next generation population where their chances of getting 

selected are proportional to their fitness values. When all the 

individuals of the population have fitness values equal to or 

greater than 6, we stop the algorithm as we have reached a 

position where all the individuals represent the best solutions 

to the problem. 

The above example is hypothetical and a very simple one, 

but it gives us an idea of how genetic algorithm functions 

and how it can effectively reduce the search space of a NP-

hard problem. Yet, GA is still not very suited to be applied to 

problem domain of query optimization as the encoding of 

chromosomes or possible solutions in GA is in form of bit 

strings which may be real or binary valued whereas the most 

suiTABLE encoding scheme for possible solutions of query 

optimization problem is tree representation. In our next 

section, we take an overview of Genetic Programming 

seeking a solution to our problem. 

3.   Genetic Programming 

As the name itself implies, Genetic Programming (GP) is an 

extension of Genetic Algorithm (GA). It follows the same 

cyclic process of fitness evaluation, selection, crossover and 

mutation of the chromosomes to optimize a NP-hard 

problem. The major difference between GA and GP is the 

encoding scheme applied to represent the chromosomes. 

Genetic Programming [4] was specifically designed to 

optimize computer programs or mathematical expressions 

which are difficult to represent in bit strings without 

distortion of the basic structure of the chromosomes 

(solutions). In GP, the chromosomes are represented as trees 

where the internal nodes of the tree represent the function(s) 

or operator(s) and the leaves represent the operand(s) or 

arguments provided to the function(s). For example, Figure 

(6) shows the tree representation of the mathematical 

expression, x
2
 + x – 5. Here, in this expression +, -, * are the 

operators and hence are internal nodes of the tree. The 

operands x and 5 are shown as the leaves of the tree. 

 

 

 

 

 

 

After all the chromosomes constituting the initial population 

have been generated, the cyclic process as in GA starts over 

again. The fitness function assigns a fitness value to each 

chromosome which then participates in crossover and/or 

mutation to produce newer individuals for the next 

generation. Some of the chromosomes from the current 

generation may be copied to the next generation and this 

phenomenon is termed as reproduction.  
 

 

 

 

 

 

 

 

 

 

 

Figure. 8: (a) One offspring crossover between 2 chromosomes, 

and (b) Swap Mutation applied to a chromsome 
The fitter individuals participate in crossover to produce one 

or two offspring. The crossover takes place by swapping of 

sub trees selected randomly between the parents. Some of the 

less fit chromosomes undergo mutation to produce new 

individuals which might have better fitness values greater 

than their respective parent. A more detailed and informative 

discussion on Genetic Programming can be obtained from 

Figure  5: Crossover of two chromosomes to produce two 

offspring 

Figure.6: Mutation of relatively weaker individual 

Figure.7: Tree Representation of x2 + x - 5 
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[4]. Figure (7) illustrates the operations of crossover and 

mutation in genetic programming respectively.Thus, the 

hindrance that was forwarded by the genetic encoding 

scheme used in GA to direct application of GA to query 

optimization problem has been efficiently eliminated by the 

encoding scheme applied in GP. The chromosomes in query 

optimization are the QEPs which can quite effectively be 

encoded in tree representation. 

4. Query Optimization Using Genetic 

Programming (GP) 

  The above discussion sets a very strong inclination for 

genetic programming to be used for optimization of queries. 

GP (also GA) reduces the search space of a problem domain 

significantly by constructing the (sub)optimal solution(s) to 

the problem by combining possible good solutions and also 

by reconstructing (mutating) weak solutions into better 

solutions. As we already know that the search space of 

Query Execution Plans (QEPs) in the query optimization 

problem grows exponentially with increase in number of 

relations involved in a query (more specifically join queries). 

The best QEP can only be evaluated through an exhaustive 

search of this search space. But such brute force approach is 

impractical in situations where the search space of QEPs is 

quite large as this increases the optimization time drastically 

and hence consequently degrades performance. The solution 

to this is searching a portion of the search space and 

selecting a QEP which might not be the best one but quite 

close to it. But then the reduced size of the search space 

reduces the guarantee that the selected QEP will at least be a 

suboptimal one. So, we need such a method to optimize the 

queries which not only reduces the huge search space but 

also guarantees a suboptimal solution if not the optimal one 

which is quite close to the best one.  Genetic Programming 

by its very nature not only reduces the search space by 

selecting individuals that are fit enough but also constructs 

an optimal solution from the suboptimal ones. So, in a sense, 

GP ends our quest for that one appropriate method for query 

optimization. 

Let‘s dive into designing a model that uses Genetic 

Programming approach to optimize complex queries 

involving joining of multiple relations (most suiTABLE for 

join queries that involve more than 5-6 relations). The first 

requirement for the model is the population of possible 

solutions. Since, in our case we are trying to optimize a 

query, so our population intuitively consists of the different 

equivalent Query Execution Plans (QEPs) generated by the 

parser and translator. These QEPs are the query trees or 

parse trees and hence qualify the encoding scheme for 

chromosomes as defined in [3] and [4]. Figure (8) shows two 

equivalent QEPs for a query which involves joining of three 

relations A, B and C.  

Such QEPs act as chromosomes for the population in 

Genetic Programming. We use QEP, chromosome and 

individual interchangeably throughout the rest of the paper. 

The fact that we do not have to bother about the encoding as 

QEPs are already in the  

 

 

 

Figure. 9: Query trees showing join between three relations 

required representation makes application of GP to the 

problem domain even more alluring. 

The next step is to define the fitness function to evaluate the 

quality of each QEP. But before defining the fitness function, 

we sense a small obstacle. Since, crossover and mutation are 

operations that alter the structure of the tree(s) to generate 

new equivalent tree(s), such alteration may result in creation 

of a new tree that is not a valid solution to the query in 

observation or even might not be a syntactically correct 

query tree (QEP). So, to avoid such trees from getting 

selected into the next generation population, we introduce a 

condition that must be satisfied by the newly generated trees. 

Definition: Say, if R1 and R2 are two relations that do not 

have a common attribute, then a join involving these 

relations results in a Cartesian Product, R1 X R2, creating an 

intermediate relation containing a copy of every record in R1 

against each record of R2. Such operations are too costly and 

must be avoided as best as possible. So, if the tree generated 

contains a cross product, we don‘t allow it to participate in 

next generation by pruning it. 

Fitness Function: The fitness or quality of a QEP is 

determined by the cost it accrues in terms of disk access 

time, I/O operations, CPU time, memory buffer size and 

network time (a special case of distributed DBMS). Out of 

all the factors, the disk access time is the slowest since 

modern day systems suffice to provide CPU time or I/O time 

that is quite negligible compared to the disk access time 

required. The disk access time is directly proportional to 

number of records contained in the participating relation(s). 

In other words, the more records a relation holds, the more 

time is required to retrieve the same. The memory buffer also 

plays a significant role in this case, as larger the buffer size; 

the more records can be stored in memory for subsequent 

processing. Moreover, the cost is further affected by the 

application of different selection algorithms, join algorithms 

and indexes as discussed in [5]. One point to notice is that 

the DBMS does not physically execute each and every query 

plan to calculate the cost; rather this cost estimation is an 

approximation and the DBMS maintains statistics about the 

relations to aid in such approximation. 

Let P1, P2, P3,…...………., Pi  be the generated QEPs of a 

query. The QEP with minimum cost is the best optimal one. 

Our aim is to select one such QEP which if not the best is 

quite similar to the best. We know, the less the cost of a 

QEP, the more the fitness of a QEP. If the cost of i
th 

plan is 

given by Cost(Pi), the fitness of this QEP or chromosome in 

GP is given by equation (1), 

f (Pi)= 1−
Cost (Pi)

∑
k= 1

n

Cost(Pk)
 

   (1) 

The value of f(Pi) is in the range of 0 to 1. Thus, equation (1) 

signifies that the smaller the cost of a plan, the greater it‘s 

fitness value. After defining the fitness function, we are now 

ready to generate our initial population for the model.  

The initial population is generated by randomly selecting N 

QEPs from the search space. Selective pressure is a term that 

describes the amount of constraint we apply in selecting 

chromosomes to be included in our population. If selective 

pressure is high, weaker individuals get very little chance of 

selection, while low selective pressure allows weaker 

individuals to be selected more readily. If selective pressure 
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is high and population size is low, then the algorithm 

converges too quickly and we might not get an optimal 

solution. On the other hand, low selective pressure and large 

population size though increases exploration capabilities but 

increases the convergence time also. We select a high 

selective pressure by restricting the fitness to a certain 

threshold. Since we select high selective pressure, we keep 

the population size constant throughout the entire process. 

We achieve such constant population by randomly selecting 

some QEPs from the search space in each subsequent 

generation along with the new individuals generated from 

crossover, mutation and reproduction to achieve the constant 

population size defined. After selecting the first generation 

or initial population, fitness function as given in equation (1) 

assigns a fitness value to each individual in the population. 

Crossover: As discussed earlier, crossover is the process of 

production of offspring through exchange of parental 

characteristics. In GP, it is the production of one offspring or 

two offspring by replacement or swapping respectively of 

sub trees from both parent trees. Now, the question is which 

individuals should participate in crossover and which not. 

Since, it is our aim to produce stronger individuals with 

every new generation, we want only stronger individuals 

which have more fitness should participate in crossover. We 

define a crossover probability which is directly proportional 

to the fitness of the individual. The crossover probability of 

i
th

 individual is given by, 

 

Probabilitycrossover (Pi)= γf (Pi) (2) 

Here, ϒ is the constant of proportionality. 

Based on the crossover probability defined in equation (2), 

individuals are selected to participate in the crossover 

process. Two individuals are selected in random and 

subjected to two offspring crossover as discussed earlier. A 

point to take care of is the distortion of tree structure due to 

such exchange of sub trees in crossover. After crossover, the 

offspring produced might not even represent valid trees. So, 

to maintain the validity of offspring, we impose a restriction 

on crossover. Only similar nodes (nodes with same operator) 

from both trees are selected and exchanged to produce new 

offspring. Since, a node or sub tree is replaced by a similar 

one, the validity of the created offspring remain intact. The 

fitness values of each offspring is then evaluated using 

equation (1) and only if the fitness is equal to or greater than 

at least one parent, then the offspring is selected to possibly 

participate in the next generation. 

Mutation: As discussed, mutation is the inversion of some of 

the characteristics. Many mutation operators have been 

discussed in [Koza, 1991]. We propose the swap mutation 

for our model. Why? Let‘s say there are two relations R1 and 

R2 containing 1000 and 10000 records respectively. If we 

join these relations on an index in the order, R1 join   R2, the 

DBMS searches for a match in R2 corresponding to records 

in R1. The reverse is the case if we join both relations in the 

order, R2 join R1. Thus, it is clear the R1 join  R2 results in 

lesser searches than R2 join R1 and hence it can be concluded 

that join ordering affects the cost. So, swap mutation which 

swaps both the child of a node is most suiTABLE for our 

problem domain 

After deciding on the mutation operator, we now need to 

decide on which individuals to apply the mutation on. By 

convention and nature of mutation operation, it is seen that 

the weaker individuals should have higher probability of 

undergoing mutation. So, the less the fitness of an individual, 

the higher is its probability to be subjected to mutation. The 

mutation probability of i
th

 individual (QEP) is given by, 

ProbabilityMutation(Pi)=
δ

f (Pi)
 

    (3) 

 Here, δ is the constant of proportionality. 

Based on the mutation probability, individuals are selected to 

be subjected to mutation. The new individual created from 

such mutation is evaluated and assigned a fitness value. If its 

fitness is greater than the mutating individual, it is selected to 

possibly participate in the subsequent generation. 

Selection: The population for the next generation is 

generated by combining individuals formed from crossover 

which accounts for 90% of new population, 5% population is 

composed of individuals resulting from mutation, 4% of the 

new population is generated by randomly selecting 

individuals from search space and 1% is reproduced (copied 

from current generation to the next). The individuals are 

selected based on their fitness proportionality. 

Stopping Criterion: We define two stopping conditions for 

the algorithm. One condition is if we find QEP with fitness 

equal to or greater than 0.95. The other condition is when the 

best fitness value is repeated for X generations where X is 

user defined. This is so because we assume that since the 

best fitness value is repeated in subsequent generations again 

and again, it is most probable that this is the minimum cost 

to execute the given query. And hence, at the end we are left 

with a QEP which if not the most optimal is very close to the 

best one.  

5. Conclusion 

In this paper, we seek to find a solution to optimizing 

complex queries in the light of Evolutionary Algorithms 

which are quite efficient to be implemented to solve NP-hard 

optimization problems such as ours. We explore the query 

processing and optimization architectures and explore the 

challenges in this area. Next, we try to understand the 

working principle of Genetic Algorithms and its extension, 

Genetic Programming. We try to justify why GP is ideal for 

application to the problem domain. At last, we propose a 

model to apply genetic programming approach to optimize 

complex queries. The application of genetic algorithms to 

query optimization is still not a very explored domain and 

there are much possibilities in this direction. We intend to 

dedicate further research to improvise the proposed model as 

well as design a system based on the discussed model in 

future. 
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