
ADBU-Journal of Engineering Technology

AJET, ISSN: 2348-7305, Volume 4(1), 2016 158

Query Optimization Using a Genetic Programming

Approach

Shahid Zaman Barbhuiya
 1
, Mrs. Gypsy Nandi

 2

1Don Bosco College of Engineering and Technology, Assam Don Bosco University

Airport Road, Azara, Guwahati - 781017, Assam. INDIA.

shahidpt0982219@gmail.com

2 Don Bosco College of Engineering and Technology, Assam Don Bosco University

Airport Road, Azara, Guwahati - 781017, Assam. INDIA.
gypsy.nandi@dbuniversity.ac.in

Abstract:Query optimization has been a research hot topic since the 70’s. Still today new methods

are introduced to optimize queries since the problem is NP-hard in nature. There exist multiple ways

to execute the same query and the search space increases exponentially with increase in complexity of

queries. Even the accepted methods are inadequate to optimize present day complex queries. In this

paper, we propose a model based on Genetic programming to optimize such queries. We briefly

explain the functioning of Genetic Algorithms and Genetic Programming and try to establish a strong

base that supports application of Genetic Programming approach to query optimization.

Keywords:Query Optimization, Genetic Algorithms, Genetic Programming

1. INTRODUCTION

Query is an instruction to the database system issued by an

end user to obtain a required output/answer. Queries act as

the sole medium for the end user to interact with the database

system either to store data or retrieve data and/or

information. Queries can be as simple as ―Find the average

salary of all the employees working in an organization‖ or

quite complex as ―Find the internet usage log of all the

employees working in New York branch of an organization

whose annual salary is greater than $100000‖. The quality of

performance of a DBMS is highly determined by its ability

to provide the response to a particular query within the least

time possible. This activity of optimizing the query to

provide required output accurately and in the least possible

time is termed as Query Optimization [1,6,7,8]. But the

Query Optimization is in itself a NP-hard problem. Why?

Let‘s try to understand with the help of an example.

Suppose, a user wants to find out the names of employees

working in finance department of an organization. So, he

issues a query to the DBMS in the form of a high level query

language such as SQL. So, the query he issues is

SELECT Name from Employees Where Department =

‘Finance‘

 The DBMS has a module called the Parser and Translator

which checks the query to identify any syntax or semantic

errors. The query is then translated to low level algebraic

relational expression. There can usually be two or more

equivalent expressions for the same query. All equivalent

algebraic expressions produce the same output but might

differ in the cost required in terms of disk I/O accesses, CPU

time, memory buffer and transmission time (in distributed

DBMS). The above query can be translated into two

equivalent algebraic expressions as follows

a). σ Department=‘Finance‘ (π Name, Salary (Employee)).

b). Π Name (σ Department = ‗Finance‘ (Employee)).

This can also be represented in terms of trees known as parse

tree or query tree. It represents the order in which query is

evaluated by the Query Evaluation Engine. Figure (1) shows

two equivalent query trees of the above query. These

equivalent query trees are also called the Query Evaluation

Plans (QEP) which are then fed to the Optimizer module of

the DBMS. The task of the Optimizer is to find the best

query plan which satisfies the condition

Cost (QEPBest) = min(Costs of all QEPs)

That is, the QEP that utilizes the least time in providing the

required output to the submitting user of the query. All the

QEPs together form the search space for the optimizer.

We can clearly see that such a simple query as the above one

has two query evaluation plans, consider the case where the

required answer can only be obtained by joining

records/tuples from multiple TABLEs. For N relations

involved in such join queries, N! equivalent QEPs to solve

the problem can be obtained by applying commutative and

associative laws for joins. Figure (2) shows a graph

illustrating the variation in QEPs with change in number of

relations involved in join. In modern Engineering and

Artificial Intelligence databases, such join queries involving

large number of relations is common and hence the search

space increases exponentially. Moreover, toggling between

the different join algorithms and/or considering bushy trees

over linear trees further increases the search space

exponentially. An exhaustive or deterministic search of such

a large space to find the best solution is impractical as it

increases the optimization time drastically and subsequently

increases the computation time of the query. A randomized

search of the search space in such a scenario would be a

more optimal strategy. Such a search strategy reduces the

search space by random selecting QEPs and from amongst

these selects a QEP which might not be the best but one with

cost quite similar to the best one. Here, though the best QEP

Figure2: Query trees corresponding to above query

ADBU-Journal of Engineering Technology

 159 AJET, ISSN: 2348-7305, Volume 4(1), 2016

might not get selected but the search approach significantly

reduces the optimization time and hence improves the

computation time of the query.

1 2 3 4 5 6 7

0

1000

2000

3000

4000

5000

6000

Query Trees

Ta bles

Evolutionary Algorithms, more specifically, Genetic

Algorithms have often proved to be high performing in such

NP-hard optimization problems. So, in this paper, we seek to

explore the possibilities of optimizing the query by following

a Genetic Programming Approach which is an extension of

Genetic Algorithms.

The rest of the paper is organized such that Section 2 and

Section 3 briefly describe the Genetic Algorithm and Genetic

Programming paradigms respectively. In Section 4, we

propose a model to apply Genetic Programming to optimize

queries. Section 5 concludes the discussion with insights into

future research and scopes.

2. Genetic Algorithm

Genetic Algorithms [2] belong to the family of Evolutionary

Algorithms and are inspired by the Darwinian principle of

“Theory of Evolution”. According to this theory, from a

population of individuals, only those individuals possessing

essential characteristics for survival are deemed fit to survive

the competition for existence. These individuals get an

opportunity to mate with other surviving individuals to

produce offspring that possess the characteristics to survive

and hence form the population for the next generation. Some

of the individuals undergo some degree of mutation to

produce possibly better (or worse) individuals to participate

in the next generation. In this way, generation after

generation, the individuals get better and better. Genetic

Algorithms are inspired by this Evolutionary phenomenon

and are believed to be very efficient in solving NP-hard

optimization problems.

The set of possible solutions to the problem serve as the

initial population space for the genetic algorithm. The quality

of each individual is determined by a fitness function. The

more fit individuals are selected to form the first generation.

These first generation individuals mate with each other in the

form of crossover to produce offspring that have the fit

characteristics from both the parents and are expected to be

more or equally fit as their parents. Crossover is generally

the exchange of characteristics between two (sometimes

more) individuals. Some of less fit individuals of first

generation undergo mutation which signifies change in some

of the characteristics of the individual. Usually, inversion of

characteristics such as flipping of bits from 0 to 1 and vice-

versa is what actually happens in mutation. So, by

convention it is expected that weaker individuals undergo

more mutation than relatively strong individuals in hope to

produce an individual fitter than the one undergoing

mutation. Similarly, strong individuals have higher

probabilities to participate in crossover with an expectation

that the offspring produced as a result of exchange of strong

characteristics between parents will have fitness value

greater than the parents. These new individuals generated

through crossover and mutation along with some of the

fittest individuals from current generation form the second

generation. This cyclic process of fitness evaluation,

selection, crossover and mutation continues until a stopping

criterion is matched. This last generation is comprised of

individuals that represent the best solutions to the given

problem.

Suppose, we want to generate 8-bit long binary strings which

consist of maximum number of 1‘s. Let‘s apply genetic

algorithm to find some optimal solution to the problem. The

steps involved in this process are as follows

a) Encoding: The first step is to define the structure of the

individuals or possible solutions. We represent the

individuals as strings of length 8. This string is also called a

chromosome which is made up of eight bits or genes. Each

gene either has a value of 1 or 0. Figure (3) shows two

chromosomes.

b) Fitness function: Since our aim is to find solutions

containing maximum number of 1‘s, so our fitness function

assigns a fitness value to each of the individuals which is

equal to the number of 1‘s in the chromosome. The

chromosomes shown in Figure (3) have fitness values of 4

and 6 respectively.

c) Selection: There are many selection methods available

which have been thoroughly discussed in [2] and [3]. For our

problem, we select the chromosomes randomly from the

initial population which is comprised of random 8-bit long

binary strings.

d) Crossover: There are various crossover operators

available as described in [2] and [3]. Out of these, we use the

two-point crossover for illustration in our problem domain.

In two-point crossover, two points (bits or genes) in the

string are selected and all the bits in between these two

points (inclusive) are exchanged between the two

participating chromosomes to produce two offspring. Either

Figure3: Graph showing change in QEP with increase in

number of relations involved in join

Figure4: Two chromosomes representing two possible

solutions

ADBU-Journal of Engineering Technology

AJET, ISSN: 2348-7305, Volume 4(1), 2016 160

one or both or none of the individuals are selected to

participate in the next generation depending on their fitness

values. Figure (4) shows the crossover between two

relatively strong chromosomes of the above stated problem.

The crossover produces one offspring with fitness of 8 which

is greater than both its parents. Thus, we can see how

crossover can result in production of fitter individuals in the

process.

e) Mutation: Similar to crossover, many mutation operators

have also been discussed in [2]. We use the one-point

mutation in our problem domain. In one-point mutation, a

random bit or gene in the chromosome (string) is selected

and all the bits after that bit (inclusive) are flipped or

inverted e.g. 0 to 1 and vice-versa. Figure (5) shows the one-

point mutation being applied to a relatively weaker

chromosome to produce a stronger individual.

f) Stopping Criterion: The new individuals produced as a

result of crossover and mutations are then selected to form

the next generation population where their chances of getting

selected are proportional to their fitness values. When all the

individuals of the population have fitness values equal to or

greater than 6, we stop the algorithm as we have reached a

position where all the individuals represent the best solutions

to the problem.

The above example is hypothetical and a very simple one,

but it gives us an idea of how genetic algorithm functions

and how it can effectively reduce the search space of a NP-

hard problem. Yet, GA is still not very suited to be applied to

problem domain of query optimization as the encoding of

chromosomes or possible solutions in GA is in form of bit

strings which may be real or binary valued whereas the most

suiTABLE encoding scheme for possible solutions of query

optimization problem is tree representation. In our next

section, we take an overview of Genetic Programming

seeking a solution to our problem.

3. Genetic Programming

As the name itself implies, Genetic Programming (GP) is an

extension of Genetic Algorithm (GA). It follows the same

cyclic process of fitness evaluation, selection, crossover and

mutation of the chromosomes to optimize a NP-hard

problem. The major difference between GA and GP is the

encoding scheme applied to represent the chromosomes.

Genetic Programming [4] was specifically designed to

optimize computer programs or mathematical expressions

which are difficult to represent in bit strings without

distortion of the basic structure of the chromosomes

(solutions). In GP, the chromosomes are represented as trees

where the internal nodes of the tree represent the function(s)

or operator(s) and the leaves represent the operand(s) or

arguments provided to the function(s). For example, Figure

(6) shows the tree representation of the mathematical

expression, x
2
 + x – 5. Here, in this expression +, -, * are the

operators and hence are internal nodes of the tree. The

operands x and 5 are shown as the leaves of the tree.

After all the chromosomes constituting the initial population

have been generated, the cyclic process as in GA starts over

again. The fitness function assigns a fitness value to each

chromosome which then participates in crossover and/or

mutation to produce newer individuals for the next

generation. Some of the chromosomes from the current

generation may be copied to the next generation and this

phenomenon is termed as reproduction.

Figure. 8: (a) One offspring crossover between 2 chromosomes,

and (b) Swap Mutation applied to a chromsome
The fitter individuals participate in crossover to produce one

or two offspring. The crossover takes place by swapping of

sub trees selected randomly between the parents. Some of the

less fit chromosomes undergo mutation to produce new

individuals which might have better fitness values greater

than their respective parent. A more detailed and informative

discussion on Genetic Programming can be obtained from

Figure 5: Crossover of two chromosomes to produce two

offspring

Figure.6: Mutation of relatively weaker individual

Figure.7: Tree Representation of x2 + x - 5

ADBU-Journal of Engineering Technology

 161 AJET, ISSN: 2348-7305, Volume 4(1), 2016

[4]. Figure (7) illustrates the operations of crossover and

mutation in genetic programming respectively.Thus, the

hindrance that was forwarded by the genetic encoding

scheme used in GA to direct application of GA to query

optimization problem has been efficiently eliminated by the

encoding scheme applied in GP. The chromosomes in query

optimization are the QEPs which can quite effectively be

encoded in tree representation.

4. Query Optimization Using Genetic

Programming (GP)

 The above discussion sets a very strong inclination for

genetic programming to be used for optimization of queries.

GP (also GA) reduces the search space of a problem domain

significantly by constructing the (sub)optimal solution(s) to

the problem by combining possible good solutions and also

by reconstructing (mutating) weak solutions into better

solutions. As we already know that the search space of

Query Execution Plans (QEPs) in the query optimization

problem grows exponentially with increase in number of

relations involved in a query (more specifically join queries).

The best QEP can only be evaluated through an exhaustive

search of this search space. But such brute force approach is

impractical in situations where the search space of QEPs is

quite large as this increases the optimization time drastically

and hence consequently degrades performance. The solution

to this is searching a portion of the search space and

selecting a QEP which might not be the best one but quite

close to it. But then the reduced size of the search space

reduces the guarantee that the selected QEP will at least be a

suboptimal one. So, we need such a method to optimize the

queries which not only reduces the huge search space but

also guarantees a suboptimal solution if not the optimal one

which is quite close to the best one. Genetic Programming

by its very nature not only reduces the search space by

selecting individuals that are fit enough but also constructs

an optimal solution from the suboptimal ones. So, in a sense,

GP ends our quest for that one appropriate method for query

optimization.

Let‘s dive into designing a model that uses Genetic

Programming approach to optimize complex queries

involving joining of multiple relations (most suiTABLE for

join queries that involve more than 5-6 relations). The first

requirement for the model is the population of possible

solutions. Since, in our case we are trying to optimize a

query, so our population intuitively consists of the different

equivalent Query Execution Plans (QEPs) generated by the

parser and translator. These QEPs are the query trees or

parse trees and hence qualify the encoding scheme for

chromosomes as defined in [3] and [4]. Figure (8) shows two

equivalent QEPs for a query which involves joining of three

relations A, B and C.

Such QEPs act as chromosomes for the population in

Genetic Programming. We use QEP, chromosome and

individual interchangeably throughout the rest of the paper.

The fact that we do not have to bother about the encoding as

QEPs are already in the

Figure. 9: Query trees showing join between three relations

required representation makes application of GP to the

problem domain even more alluring.

The next step is to define the fitness function to evaluate the

quality of each QEP. But before defining the fitness function,

we sense a small obstacle. Since, crossover and mutation are

operations that alter the structure of the tree(s) to generate

new equivalent tree(s), such alteration may result in creation

of a new tree that is not a valid solution to the query in

observation or even might not be a syntactically correct

query tree (QEP). So, to avoid such trees from getting

selected into the next generation population, we introduce a

condition that must be satisfied by the newly generated trees.

Definition: Say, if R1 and R2 are two relations that do not

have a common attribute, then a join involving these

relations results in a Cartesian Product, R1 X R2, creating an

intermediate relation containing a copy of every record in R1

against each record of R2. Such operations are too costly and

must be avoided as best as possible. So, if the tree generated

contains a cross product, we don‘t allow it to participate in

next generation by pruning it.

Fitness Function: The fitness or quality of a QEP is

determined by the cost it accrues in terms of disk access

time, I/O operations, CPU time, memory buffer size and

network time (a special case of distributed DBMS). Out of

all the factors, the disk access time is the slowest since

modern day systems suffice to provide CPU time or I/O time

that is quite negligible compared to the disk access time

required. The disk access time is directly proportional to

number of records contained in the participating relation(s).

In other words, the more records a relation holds, the more

time is required to retrieve the same. The memory buffer also

plays a significant role in this case, as larger the buffer size;

the more records can be stored in memory for subsequent

processing. Moreover, the cost is further affected by the

application of different selection algorithms, join algorithms

and indexes as discussed in [5]. One point to notice is that

the DBMS does not physically execute each and every query

plan to calculate the cost; rather this cost estimation is an

approximation and the DBMS maintains statistics about the

relations to aid in such approximation.

Let P1, P2, P3,…...………., Pi be the generated QEPs of a

query. The QEP with minimum cost is the best optimal one.

Our aim is to select one such QEP which if not the best is

quite similar to the best. We know, the less the cost of a

QEP, the more the fitness of a QEP. If the cost of i
th

plan is

given by Cost(Pi), the fitness of this QEP or chromosome in

GP is given by equation (1),

f (Pi)= 1−
Cost (Pi)

∑
k= 1

n

Cost(Pk)

 (1)

The value of f(Pi) is in the range of 0 to 1. Thus, equation (1)

signifies that the smaller the cost of a plan, the greater it‘s

fitness value. After defining the fitness function, we are now

ready to generate our initial population for the model.

The initial population is generated by randomly selecting N

QEPs from the search space. Selective pressure is a term that

describes the amount of constraint we apply in selecting

chromosomes to be included in our population. If selective

pressure is high, weaker individuals get very little chance of

selection, while low selective pressure allows weaker

individuals to be selected more readily. If selective pressure

ADBU-Journal of Engineering Technology

AJET, ISSN: 2348-7305, Volume 4(1), 2016 162

is high and population size is low, then the algorithm

converges too quickly and we might not get an optimal

solution. On the other hand, low selective pressure and large

population size though increases exploration capabilities but

increases the convergence time also. We select a high

selective pressure by restricting the fitness to a certain

threshold. Since we select high selective pressure, we keep

the population size constant throughout the entire process.

We achieve such constant population by randomly selecting

some QEPs from the search space in each subsequent

generation along with the new individuals generated from

crossover, mutation and reproduction to achieve the constant

population size defined. After selecting the first generation

or initial population, fitness function as given in equation (1)

assigns a fitness value to each individual in the population.

Crossover: As discussed earlier, crossover is the process of

production of offspring through exchange of parental

characteristics. In GP, it is the production of one offspring or

two offspring by replacement or swapping respectively of

sub trees from both parent trees. Now, the question is which

individuals should participate in crossover and which not.

Since, it is our aim to produce stronger individuals with

every new generation, we want only stronger individuals

which have more fitness should participate in crossover. We

define a crossover probability which is directly proportional

to the fitness of the individual. The crossover probability of

i
th

 individual is given by,

Probabilitycrossover (Pi)= γf (Pi) (2)

Here, ϒ is the constant of proportionality.

Based on the crossover probability defined in equation (2),

individuals are selected to participate in the crossover

process. Two individuals are selected in random and

subjected to two offspring crossover as discussed earlier. A

point to take care of is the distortion of tree structure due to

such exchange of sub trees in crossover. After crossover, the

offspring produced might not even represent valid trees. So,

to maintain the validity of offspring, we impose a restriction

on crossover. Only similar nodes (nodes with same operator)

from both trees are selected and exchanged to produce new

offspring. Since, a node or sub tree is replaced by a similar

one, the validity of the created offspring remain intact. The

fitness values of each offspring is then evaluated using

equation (1) and only if the fitness is equal to or greater than

at least one parent, then the offspring is selected to possibly

participate in the next generation.

Mutation: As discussed, mutation is the inversion of some of

the characteristics. Many mutation operators have been

discussed in [Koza, 1991]. We propose the swap mutation

for our model. Why? Let‘s say there are two relations R1 and

R2 containing 1000 and 10000 records respectively. If we

join these relations on an index in the order, R1 join R2, the

DBMS searches for a match in R2 corresponding to records

in R1. The reverse is the case if we join both relations in the

order, R2 join R1. Thus, it is clear the R1 join R2 results in

lesser searches than R2 join R1 and hence it can be concluded

that join ordering affects the cost. So, swap mutation which

swaps both the child of a node is most suiTABLE for our

problem domain

After deciding on the mutation operator, we now need to

decide on which individuals to apply the mutation on. By

convention and nature of mutation operation, it is seen that

the weaker individuals should have higher probability of

undergoing mutation. So, the less the fitness of an individual,

the higher is its probability to be subjected to mutation. The

mutation probability of i
th

 individual (QEP) is given by,

ProbabilityMutation(Pi)=
δ

f (Pi)

 (3)

 Here, δ is the constant of proportionality.

Based on the mutation probability, individuals are selected to

be subjected to mutation. The new individual created from

such mutation is evaluated and assigned a fitness value. If its

fitness is greater than the mutating individual, it is selected to

possibly participate in the subsequent generation.

Selection: The population for the next generation is

generated by combining individuals formed from crossover

which accounts for 90% of new population, 5% population is

composed of individuals resulting from mutation, 4% of the

new population is generated by randomly selecting

individuals from search space and 1% is reproduced (copied

from current generation to the next). The individuals are

selected based on their fitness proportionality.

Stopping Criterion: We define two stopping conditions for

the algorithm. One condition is if we find QEP with fitness

equal to or greater than 0.95. The other condition is when the

best fitness value is repeated for X generations where X is

user defined. This is so because we assume that since the

best fitness value is repeated in subsequent generations again

and again, it is most probable that this is the minimum cost

to execute the given query. And hence, at the end we are left

with a QEP which if not the most optimal is very close to the

best one.

5. Conclusion

In this paper, we seek to find a solution to optimizing

complex queries in the light of Evolutionary Algorithms

which are quite efficient to be implemented to solve NP-hard

optimization problems such as ours. We explore the query

processing and optimization architectures and explore the

challenges in this area. Next, we try to understand the

working principle of Genetic Algorithms and its extension,

Genetic Programming. We try to justify why GP is ideal for

application to the problem domain. At last, we propose a

model to apply genetic programming approach to optimize

complex queries. The application of genetic algorithms to

query optimization is still not a very explored domain and

there are much possibilities in this direction. We intend to

dedicate further research to improvise the proposed model as

well as design a system based on the discussed model in

future.

References

[1] Chaudhuri, S. (1998, May). An overview of query

optimization in relational systems. In Proceedings of the

seventeenth ACM SIGACT-SIGMOD-SIGART symposium on

Principles of database systems (pp. 34-43). ACM.

[2] Mitchell, M. (1998). An introduction to genetic

algorithms. MIT press.

[3] Engelbrecht, A. P. (2007). Computational intelligence:

an introduction. John Wiley & Sons.

[4] Poli, R., & Koza, J. (2014). Genetic Programming (pp.

143-185). Springer US.

ADBU-Journal of Engineering Technology

 163 AJET, ISSN: 2348-7305, Volume 4(1), 2016

[5] Sethi, N., & Chauhan, M. (2013). Introduction to Query

Processing and Optimization. International Journal of

Research in Computer Engineering & Electronics, 2(3).

[6] Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigumus, H.,

& Naughton, J. F. (2013, April). Predicting query execution

time: Are optimizer cost models really unusable?. In Data

Engineering (ICDE), 2013 IEEE 29th International

Conference on (pp. 1081-1092). IEEE.

[7] Park, H., Pang, R., Parameswaran, A., Garcia-Molina, H.,

Polyzotis, N., & Widom, J. (2013). An overview of the deco

system: data model and query language; query processing

and optimization. ACM SIGMOD Record, 41(4), 22-27.

[8] Chaudhuri, S. (1998, May). An overview of query

optimization in relational systems. In Proceedings of the

seventeenth ACM SIGACT-SIGMOD-SIGART symposium on

Principles of database systems (pp. 34-43). ACM.

Author Profile

Shahid Zaman Barbhuiya, is a post graduate student of

Don Bosco School of Engineering and Technology, Assam

Don Bosco University. He completed his Bachelors in

Engineering from APIIT SD India in 2013 and currently

pursuing his Masters in Technology in Computer Science

and Engineering. His specialization is Data Mining.

Mrs. Gypsy Nandi, is currently working as Assistant

Professor at Assam Don Bosco University. She completed

her M.Sc and M.Phil in Computer Science. She is currently

pursuing her Ph.D. in Computer Science. Her areas of

interest are Data Mining and Machine Learning.

