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Abstract: Stiffness of a cross-ply laminated composite plate has been investigated with aspect 

ratios (AR) for different orientation sequences of laminate using finite element method (FEM). A 

simply supported plate with uniform distributed load has been considered for present analysis. A 

MATLAB code has been developed to find out the deflection of the laminated composite plates. 

The same has also been analyzed using ANSYS software. The computational results have been 

compared with the theoretical results (classical lamination theory) and a good agreement has been 

found. When number of lamina is increased with 900 domination or decreased with 00 domination 

under the condition AR less than 1 and increased with 00 domination or decreased with 900 

domination under the condition AR greater than 1, higher stiffness was observed. 
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1. Introduction 

Israelites using straw reinforced clay bricks are an early 

example of composites application. The individual 

constituents viz. clay and straw, could not serve the function 

by alone but did when put together. Indicative examples 

include the use of bamboo shoots reinforced mud walls, 

glued laminated wood by Egyptians and laminated metals 

used in forging swords. In early era, the modern composites 

were used in different fields of innovation. A structural 

composite can be defined as a system of material consisting 

of two or more insoluble phases on a macroscopic scale for 

remarkable mechanical performance which cannot serve by 

the constituent acting alone. Discontinuous, stiffer and 

stronger phase is reinforcement, whereas the less stiff and 

weaker phase is matrix. Composites can be classified by 

geometry of the reinforcement viz. particulate, flake and 

fibers. Long fibers in various forms are inherently much 

stiffer and stronger than the same material in bulk form.  

Obviously, then, the geometry of fiber and physical makeup 

are somehow crucial to the evaluation of its strength and 

must be considered for structural applications. Fiber 

reinforced composite (FRC) lamina is generally having 

thickness on the order of 0.125mm can be shown in Figure 1 

[1-3]. 

 
Figure 1: A unidirectional fiber reinforced lamina. 

 

A composite laminate is two or more laminae bonded 

together in the direction of lamina thickness to act as an 

integral structural element. Laminae principal material 

directions are oriented to produce a structural element 

capable of resisting load in several directions. Each lamina 

can be spot by its location in the laminate, its material, and 

its orientation with reference axis. 

 

 
Figure 2: Schematic diagram of a [0/90/0/90] cross-ply 

laminate. 

 

A laminate is called symmetric cross-ply if the material, 

angle, and the thickness of plies are the same above and 

below the midplane and also if only 0
0
 and 90

0
 plies have 

been used to make laminates, such as [0/902/0/902/0]. Figure 

2 shows the cross-ply composite laminate having four 

laminae with laminate code [0/90/0/90]. 

2. Methodology 

2.1 Analytical methodology 

Classical laminate theory (CLT) has been used to calculate 

deformation of composite plate. For CLT, due to simplicity 

over energy and variational principles, Newtonian approach 

has been used in which summing up forces and moments on 

the plate is often used to develop the governing differential 

equations. The governing equations consisting the behaviour 

of the boundary conditions. In the present analysis, 
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assumptions made by Kirchhoff’s hypothesis have been 
used. 

 

2.1.1. Kirchhoff’s hypothesis 

A side view of a plate in the Cartesian coordinate system as 

shown in Figure 3.  

 
Figure 3: Relationship between displacements through the 

thickness of plate to midplane displacement, curvatures [1]. 

Considering the origin of the plate is at the midplane of the 

plate, that is, z = 0. Assume u
0
, v

0
 and w

0
 to be displacements 

in the x, y and z directions, respectively, at the midplane and 

u , v, and w are the displacements at a point in the x, y, and z 

directions, respectively. 
y

wo


 and 

x

wo


  are the rotations 

about the x and y axes, respectively. Displacements u, v and 

w in the x, y and z directions are:  
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In addition to Kirchhoff’s hypothesis, it has been assumed 

that the layers are perfectly bonded to each other and each 

lamina to be elastic. 

2.1.2. Governing equations 

Using strain relations: 
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By the definition of midplane curvature and strains: 
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Where, 

 and  denotes midplane normal and shear strain, 

respectively and k denotes midplane curvature. 

From equations  (4) to (12), laminate strain can be written as: 

0
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     (13) 

Global stress can be find out by stress and strain relation for 

a laminate: 
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Where, 
x , y and xy  are stresses in x, y axes and xy plane, 

respectively.
x , y and xy are strain in x, y axes and xy 

plane, respectively. 
ijQ    is transformed reduced stiffness 

matrix. Coefficients of transformed reduced stiffness matrix 

are: 
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(20) 

Where, 

C = cosθ, S = sinθ and coefficients of stiffness matrix can be 
found as: 

11 1 21 12/(1 )Q E    ; 12 12 2 21 12/(1 )Q E   

22 2 21 12/(1 )Q E    ; 66 12Q G    

Where, 

1E ,
2E =  Longitudinal, Transverse elastic modulus, 

12 ,
21 = Major, Minor Poisson’s ratio, 

12G = Shear modulus. 

Resultant forces and moments can be found as: 
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Where
1

n

k

k

h t


 , 
kt is the lamina thickness. 

xN , yN , xyN and 
xM , yM , xyM are resultant forces and 

moments in x, y axes and xy plane, respectively. 

So, stiffness matrices can be found by these generalized 

equations: 
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Where, 

[A], [B], and [D] matrixes are called Extensional, Coupling, 

and Bending stiffness matrix, respectively. 

Using equations (13) to (31) gives six simultaneous linear 

equations which can be written as:  
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(32) 

Equilibrium equations for laminated composite plate can be 

derived from the principle of virtual work [2]: 
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Where, q(x,y) is the transverse load as sown in Figure 4. 

Substituting expressions from equations (36) to (41) into the 

governing equations of plate (33), (34) and (35), we get the 

equilibrium equations that can govern the response of a 

laminated plate [2]: 
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For a cross-ply laminate the coupling stiffness matrix and the 

terms
16A ,

26A ,
16D

 
and 

26D in the extensional and bending 

stiffness matrix should be zero.  

2.1.3. Boundary conditions  

The composite plate is simply supported at all four edges 

with uniformly distributed load. Mathematical function for 

boundary conditions for simply supported plate can be 

defined as [2]: 
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(45) 

2.1.4. Deflection function 

For present analysis a fiber reinforced laminated composite 

plate of length a, width b and thickness h is considered with 

transverse loading of load q(x,y). Figure 4 shows the 

geometry and loading on composite laminated plate [2]. 

 

 

Figure 4: Geometry of plate along with applied load. 

 

For a plate, the transverse deflections function can be 

described by a differential equation of equilibrium [2]: 

   11 12 66 22, 2 2 , , ,xxxx xxyy yyyyD w D D w D w q x y   
      

(46) 

The boundary conditions from equation (45) and differential 

equation of equilibrium (46) can be satisfied by: 
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Exact solution has been found when: 
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So, for a uniform load, the solution is easily shown to be: 
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Where m, n = 1,3,5…  

2.2 Finite element modeling 

Finite element analysis of laminated composite plates has 

been performed using ANSYS software. SHELL99 

embodied in ANSYS has been used for analysis. The input 

parameters of a composite plate can be modified easily due 

to it being a shell element. For SHELL99 element, the 

composite theory was adopted for deflection analysis in the 

thickness direction. SHELL99 allows 250 layers and if more 

than a user-input constitutive matrix is also available. 

Element has six degrees of freedom at each node viz.  

translations in the nodal x, y and z directions and rotations 

about the nodal x, y and z axes. Properties of lamina are used 

in the present analysis which is listed in Table 1 [5]. 

TABLE 1:Properties of lamina [5] 

xE  25 x 106 N/m2 

y zE E  1 x 106  N/m2 

xy xz   0.25 

xy zxG G  0.5 x 106 N/m2 

yzG  0.2 x 106  N/m2 

 And yz =
y

yx xy

x

E

E
 

 
  

 
.  

Figure 5 shows isometric view of laminated composite plate 

with FE mesh. 

 

 

Figure 5: Isometric view of laminated composite plate with 

FE mesh. 

Length of composite plate a, width b and thickness h has 

been used for the finite element analysis. A pressure of 1.0 

N/m
2
 is applied on all the nodes along the surface area of the 

plate which will exactly work as uniformly distributed load. 

2.2.1. Boundary conditions 

Considering origin at O(0,0) and using SSSS [9]type 

boundary condition. At x = 0 and a, the plate is constrained 

in the y and z directions and at y = 0 and b, it is constrained 

in the x and z directions. Finite element model of laminated 

composite plate along with boundary conditions is shown in 

Figure 6. 

 

 
Figure 6: Finite element model of laminated composite plate 

along with boundary conditions. 

3. Results and discussion 

Deflection of laminated composite plate has been 

investigated for different aspect ratios (AR). Different 

orientation sequences have been considered for analysis,  

when AR ≥ 1 and when AR ≤ 1. Deflections have been found 
for different orientation sequences of laminate for a constant 

AR. For all the cases thickness and width of plate has been 

kept constant with the increase in number of laminas. 

3.1. Deflection of plate with aspect ratio 

3.1.1. For aspect ratios≤ 1 

Stiffness of composite plate has been found with different 

orientation sequences of lamina for AR≤ 1. Figure 7(a) 

shows the deflection of composite plate with ARs. 

 

 

Figure 7(a): Deflection of a composite plate with ARs≤ 1 

using CLT. 
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It can be seen from Figure 7(a) that deflection of the plate 

increase with increase in ARs. It can also be seen from 

Figure 7(a) that maximum and minimum deflection is for 

[90/0/90] and [0/90/0] orientation sequence and all the 

laminates have approximately same deflection value when 

AR is equal to one. 

The same model and boundary conditions has been 

considered for FE analysis.  

 

 

Figure 7(b): Deflection of a composite plate with AR≤ 1 

using FEM. 

 

Figure 7(b) shows the deflection of composite plate with 

ARs using FEM. The trend of curves obtained using FEM 

are similar that of obtained by CLT.   

3.1.2. For aspect ratio ≥ 1 

Stiffness of composite plate have been found with different 

orientation sequences of lamina for AR ≥ 1. Figure 8(a) 
shows the deflection of composite plate with ARs. 

 

 
Figure 8(a): Deflection of a composite plate using CLT for 

AR≥1. 
 

It can be seen from Figure 8(a) that maximum and minimum 

deflection is for laminate with [0/90/0] and [90/0/90] 

orientation sequences. 

The same model and boundary conditions has been 

considered for FE analysis. Figure 8(b) shows the deflection 

of composite plate with ARs using FEM. 

 

 
Figure 8(b): Deflection of a composite plate using FEA for 

AR≥1. 
 

Figure 8(b) shows the deflection of composite plate with 

ARs using FEM. The trend of curves obtained using FEM 

are similar that of obtained by CLT. 

3.2. Domination of lamina orientation 

Domination of lamina means that more number of a 

particular oriented lamina than others. 

3.2.1. Domination of 0
0
 lamina 

Figure 9 shows the deflection of plate with AR for 

domination of 0
0
 lamina i.e. number of 0

0
 lamina is more 

than that of 90
0
 lamina in laminate.  

 
Figure 9: Deflection of plate with AR for 0

0 
lamina 

dominated laminate. 

 

It can be seen from Figure 9 that with increase in number of 

0
0 

lamina in the laminate sequence it results in higher 

stiffness for AR≥1 and it is reversed when AR≤1. 

3.2.2. Domination of 90
0
 lamina 

Dominance of 90
0
 lamina on stiffness of plate has been 

shown in Figure 10.  
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Figure 10: Deflection of plate with AR for 90

0 
lamina 

dominated laminate. 

It can be seen from Figure 10 that with decrease in number 

of 90
0 

lamina in the sequence of laminate it results in higher 

stiffness if AR≥1 and it is reversed when AR≤1. Some of the 

important values of deflections are compared with theoretical 

results for different orientation sequence of lamina in 

laminate. Deflections of laminated composite plates for 

different orientation sequence are listed in Table 2 for a 

constant AR of 0.75 and 2.5. It could be observed from Table 

2 that the theoretical results are closed if the number of 

lamina increased in laminate for aspect ratio of 0.75 and 2.5. 

 

TABLE 2: Maximum deflection of composite plate for a 

constant AR of 0.75 and 2.5 

Sequence of laminas 

in laminate 

Deflection (mm) A
R

 CLT FEA 

0/90/90/0 0.024053 0.028021 0
.7

5
 

0/90/0/90/0 0.025903 0.026995 

0/90/0/0/90/0 0.027054 0.026662 

0/90/0/90/0/90/0 0.027731 0.027382 

90/0/90 6.43E-02 7.67E-02 2
.5

 90/0/90/0/90 0.080639 0.085067 

90/0/90/90/0/90 0.086972 0.086342 

90/0/90/0/90/0/90 0.090956 0.09001 

4. Conclusions 

Stiffness analysis of symmetric cross-ply laminated 

composite plates has been investigated for different 

orientation sequences of laminate with aspect ratios. The 

same has also been analyzed considering domination of any 

particular lamina orientation. Some of the important 

conclusions are given below: 

 For AR≤1, the maximum and minimum deflection have 
been found for ply having sequence [90/0/90] and 

[0/90/0], respectively, but it has been found reverse when 

AR≥1. 
 With increase in number of lamina for 90

0
 domination or 

decrease in number of lamina for 0
0
 domination results in 

high stiffness of composite plate for AR≤ 1. 

 With increase in number of lamina for 0
0
 domination or 

decrease in number of lamina for 90
0
 domination results 

in high stiffness of composite plate for AR≥1. 
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