

ADBU-Journal of Engineering Technology

 23 AJET, ISSN: 2348-7305, Volume 4(1), 2016

Suggestive Local Engine for SQL Developer: SLED

Shahid Zaman Barbhuiya
1
, Biplab Kumar Ray

2
, Zenith Azim

3
, Yumnam Jayanta Singh

4

Dept. of Computer Science and Engineering and IT, School of Technology,

Assam Don Bosco University, Guwahati - 781017, Assam. INDIA.

shahidpt0982219[@]gmail.com1, bip.ray11[@]gmail.com2,

zenithazim[@]gmail.com3, jayanta[@]dbuniversity.ac.in4

Abstract: Information Technology (IT) industry recruits junior staff on regular basis. Most of the applications use

databases to store or access the data. Structure Query Language (SQL) is used to communicate with database middleware.

An expensive SQL statement may engage the data centers for longer time forcing the organizations to sellout high cost for

data storage and maintenance. A tool is required for training the junior developers. This study proposes a Suggestive

Local Engine for SQL Developer (SLED). It develops a warehouse using the optimized SQL statements collected from

reputed software firms or expert team. This study uses the concept of data marts to grouped the data and frequent pattern

search algorithm to calculate frequencies and support of patterns of SQLstatements. This system suggests the developers

based on the common patterns of SQL statements used by those experts. It also warns the developers if their writing

pattern maps to the outlier statement. This system helps all the junior developers in an organization and graduates in

colleges or universities to practice with suggestions.

Keywords: Suggestive engine optimized SQL, Data Warehouse.

1. Introduction

Most of the multinational projects spend a huge amount of

money for computerization of their projects. Commonly they

have two types of expenses; one given the developer group;

another amount is given to the owner of the data server or

data center for preserving the data. The first expense may be

almost fixed for some years. However the second amount is

variable. The data center charges the parent company as per

the usages of data and also for the time that it engaged their

server. The amount will be increased if the developer wrote

SQL queries that take a longer time to execute and extra

memory for data usages. This is very much applicable to the

cloud computing environment also.

For every new IT project the firms recruit several

untrained graduates from colleges or universities. All junior

SQL developers are required to train themselves before

writing and executing their queries. They need to write less

expensive queries to reduce the cost (time, space and

complexity). Normally the developers write the codes such

as SQL statements in a Local or test environment and then it

is moved to live environment for live uses. Several hit and

trail methods are practice to provide an optimized one

(engaging the local server). Still there are high possibilities

that the developers write expensive queries. The firms may

also provide them accessibility to all the old queries written

by their seniors; however, it is time-consuming to follow

several similar queries from a bank of a large dataset.

There exists an exponential number of ways in which a

query can be executed. Let us try to understand with the

help of an example why and how the manners in which SQL

statements are written affect the query execution cost.

Suppose, we want to write a query to find the name and

address of all employees whose salary is more than Rs.

50,000 (say). The corresponding SQL query is as follows

 SELECT Name, Location FROM employee

 WHERE Salary > 50000;

The query can be divided into two executable parts viz.

Selection and projection. The selection part is responsible

for the execution of the predicate i.e. select all employee

tuples which satisfy the condition. The projection part is

responsible for selecting the values of the 'Name' and

'Location' attributes. The query can be executed in two

different ways or plans either by first carrying out the section

part and then projection or vice-versa. Considering there are

1000 records in the employee table and 50 records that

satisfy the predicate, the former plan of execution results in

first selecting 50 records and then projecting the names and

locations from this 50 records. The latter plan of execution,

however, results in first projecting 1000 names and locations

and then selecting records satisfying the predicate. Clearly,

the former plan of query execution is much efficient than the

latter one. The above query was one of the simplest and yet

had different ways of execution. Queries containing joins of

5 tables can have as many as 120 different ways of execution

and these increases exponentially with the number of tables

involved and also as the complexity of query increases.

Query optimization is the process of finding the best

execution plan for the search space of execution plans.

However, to overcome the overhead of the optimization

process itself, most query optimization methods select an

optimal plan that is quite close to the best one but the best

one. However, more the size of the search space increases,

the more the optimal plan gets away from the best plan. So,

to increase the efficiency of the optimization process, it is

necessary to write the optimal SQL statement in the first

place.

This study proposes a data warehouse named as

Suggestive Local Engine for SQL Developer (SLED) to train

the junior developers. This warehouse uses optimized SQL

statements as input to a system which as extracted from

some World-class

ADBU-Journal of Engineering Technology

 24 AJET, ISSN: 2348-7305, Volume 4(1), 2016

Fig.1.Sample of warehouse setup

Software development organization like Oracle, Microsoft or

IBM etc. This warehouse has the facility to suggest the

developer about the frequency or less expensive queries before

they write and execute queries on either local or live server. An

interface is proposed to facilitate this activity. Possible Data

marts are formed to group the similar queries. This interface is

linked to a warehouse and also to data marts which have

statistics of patterns of SQL statements. Such warehouse

system can be provided to all the academic institutions, so that

the college or university graduate practices SQL based on data

provided by some World-class Software firms. This may help

to them to be industry ready.

The remaining portion of the paper is organized as follow:

Section 2 presents some of the related works in this direction.

In section 3, we propose the study model and in section 4, the

outcomes of the study are forwarded. We conclude the paper

with section 5.

2. Related Works
SQL tuning is the process of re-writing a poorly written SQL

query such that it performs better.SQL tuning and optimization

have always remained a hot topic in the area of database

research. Such automatic SQL tuning capabilities have been

developed for Oracle 10g and Oracle 11g respectively

[1][2][3]. Microsoft and its database management solution,

SQL Server, are also not lagging behind in this area of SQL

tuning and optimization. Automatic SQL tuning capabilities for

SQL Server 2005 have been discussed in [4]. The advents of

such SQL Tuning capabilities by these major database vendors

have aided in improving the execution plan selected by the

query optimizer and also restructure and simplify the text of

badly written SQL query. However, such SQL Tuners are

mainly tailored to suit the needs of their products but the need

for such a system that uses the concept of SQL Tuning to

educate novice developers about the good practices to follow

while writing SQL queries is urgent. Educational Institutions

and hobbyist database developers can benefit much from such

a system. SQL tuning goals are discussed in [9]. [10] Proposes

an SQL tuner based on guidelines presented in [9]. A Query

Optimizer that is SQL tuning aware has been discussed in [11].

The novel frequent pattern tree (FP-tree) structure is

proposed to allow the mining frequent patterns in transaction

databases, time-series databases etc [5][6]. An algorithm is

presented to find all occurrences of one given string within

another [7].The faults in PL/SQL are predicted using SQL

metrics. Based on actual project defect data, the SQL metrics

are validated based on fault detection across PL/SQL files [8].

3. The Proposed Study Model

We developed a warehouse to help the developers. This

warehouse consists of a huge SQL dataset (around 20,000 SQL

statements) collected from a reputed software firm. The

following steps are performed to develop the system.

A. Design of the warehouse system

B. Extraction of data from the data set

C. Formation of data marts

D. Development of suggestive engine

A. Design of the warehouse system

The sample of development stages of the study is shown in

the following thediagram.

1. Data sources:

The SQL statements are collected from different sources

and stored. Error data are separated from the data sources.

2. Data Storages:

The data are extracted and stored in the main data

warehouse. Several data marts are formed based on the

requirement.

3. Suggestive engine:

The suggestive local engine is developed to provide the

 Outliers

DDL W

a

r

e

h

o

u

s

e

DCL
l

DML

l

1

2

3

Extract

 Transform

 Loading

Mining

Engine

 Data sources Data Storage Engine Users tool

ADBU-Journal of Engineering Technology

 25 AJET, ISSN: 2348-7305, Volume 4(1), 2016

suggestions while users are using the system.

4. Users tools

Interfaces are developed for user interaction with the data

marts available for the purpose.

B. Extraction of data from the data set

Data are extracted from the sources as per the requirement.

Only the SQL statements are extracted. It transformed and

shorted as per required by the data following data marts

C. Formation of data marts

The data mart is a subset or small slices of the data

warehouse that is usually oriented to a specific subject. This

prepares data marts based on types of SQL viz. DDL, DML

and DCL. The DDL and the DCL queries are quite compact

and hence do not require further optimization. Most of DDL

and DCL queries are expressed in a specified format and do not

exhibit much variation in the format. However, it is the DML

queries that draw greater concern. DML queries can be

expressed in many different forms. All different forms of the

same query return the same output but they differ significantly

in the execution cost involved. The study focuses on the DML

statements where the junior developers need training for

connections to any data stores.

So, to achieve the goal and for optimization reasons, the

DML data mart is further divided into some data marts. Now,

each data mart consists of queries that are similar to one

another regarding the functionalities that they perform such as

select, update, insert or delete. By convention the functionality

of an SQL query can be determined from the first keyword in

the SQLText of the query. For example, the query ‘SELECT *

FROM Sample’ indicates that the functionality of the query is

to retrieve data from a table because the first keyword in the

SQLText is SELECT. Using this convention, we assign SQL

queries to each data mart and the data martsare identified by

the functionality of the queries that it contains such as

SELECT, INSERT, UPDATE and so on. The algorithm to set

up the data marts can be summarized as follows-

Input - The dataset of SQL queries

Output - Various data marts based on the type of

queries

begin

for each SQL query in the dataset

 Parse SQL Query

 Identify the first keyword in query

 if data mart present

 Assign SQL to mart

 else

 Create new mart

 Assign SQL to mart

end for

end

The outlier data are analyzed based on the economy of the

SQL and gathered in the separate data mart. The considered

economy of SQL are cost (time), space associated are also

recorded (if it is provided in the dataset). We have prepared the

data marts based on the functional similarity of the SQLs.

Example SQL queries having 'select...', 'Update' or 'group by',

'having', 'union...' etc. in their SQL statements.

D. Development of suggestive engine

We utilize data mining/pattern recognition techniques to

identify hidden patterns from the expert data set of SQL

queries. The patterns will emerge in the DML query data mart

and more specifically the selection queries. Now, to search for

hidden patterns in data, there are two novel approaches: the

Apriori approach and the FP-Growth approach. The drawback

of the Apriori approach is that it requires multiple scans of the

dataset to generate the hidden patterns. This poses an extra

overhead to our suggestive engine. So, to overcome the

overhead involved, we chose to use the FP-Growth approach

for pattern generation. In this approach, an FP-tree is generated

from the SQL dataset and all the different kinds of patterns

with their respective frequencies can be generated from the

tree. The FP-Growth approach allows for pattern generation at

various levels.

Fig 2 (a): Generated Data Marts

The suggestive engine comprises of these frequent patterns

in SQL queries as well as an SQL editor for writing SQL

queries. The editor works in an online fashion and compares

the user-supplied SQL query with the frequent ones and

suggested the user of the frequency of the pattern in the dataset

thus suggesting how popular the specific pattern of the query

is. It also informs the user of the cost involved in executing this

query. The final decision is vested on the user whether s/he

goes with the suggestion or wants to continue with his/her

query. The next section describes the working of the SLED

with an example.

4. The Outcomes Of The Study

The sample of new SQL editor layout is given in figure (2).

This SQL editor will work as a suggestive local engine to

suggest the developers. It will dynamically suggestion options

ADBU-Journal of Engineering Technology

 26 AJET, ISSN: 2348-7305, Volume 4(1), 2016

to the developer. An enhanced association mining algorithm is

applied to find the frequently used SQL statement within a data

mart.

For example a developer is writing a 'Select' statement, the

SQL editor will display a count of the total query (say 4) which

is a total number of the items in data mart 1. If the developer

further continues completing the query 'Select *', the 'Local

suggestive Engine' starts working. It uses the association

mining algorithm to calculate the frequency of the SQL query

pattern written by this new developer until that point of time.

It shows the support of the SQL pattern provided by user

developer (say 1) per total number of occurrence (say 4) in that

data mart. The support is given by the frequency of pattern in

the data mart divided by the total number of patterns in the data

mart. Then the developer will come to know that s/he is

adapting a frequently used technique or using an unpopular or

an expensive SQL statement. Unpopular SQL statements can

be considered as outlier data.

The goal of the system is to find the frequency of a user-

supplied SQL query pattern in the dataset. After the data marts

have been created and all the queries have been assigned to the

marts, the system is now ready to start providing suggestions to

the novice developer. This is achieved by FP-Growth pattern

matching algorithm which searches for the frequency (or

support) of the SQLText pattern provided by the user. As the

user starts writing his/her query and enters the first keyword,

the system recognizes the functionality that the user wants to

execute and accordingly selects the data mart to use for

providing suggestions. The system functions in an online

fashion i.e. it starts searching for patterns and provide

suggestions as the user continues writing his query. As the user

continues writing his query, he keeps on generating a new

pattern. The system continuously takes in the generated pattern

and searches for its frequency of occurrence in the data mart. A

pattern is said to exist in an SQLText if it is a substring of the

SQLText. The system searches for all such substring matches

and gives the user information about the support of the pattern.

The final decision whether to go with the query or change it if

it seems to be unpopular is vested on the user. The generic

algorithm can be summarized as follows

Input- User supplied SQL query

Output- Frequency/support of the query pattern in SQL

dataset

begin

 Select data mart based on query type

Calculate the support of query pattern

from FP-tree

Provide Suggestion(s)

end

As mentioned earlier, the economy of an SQL query

corresponds to the cost and space requirements of the query.

Now, this section of the system comes into play after the user

has completed writing his query and has submitted it for

execution. However, before actual execution of the query, the

system provides the user with statistics about the cost and

space that will be requiredto the query and the average time

and space requirements of the queries contained in the data

marts. The economy statistics of the query is achieved from the

statistics about the relations maintained by the database.

Fig2(b). Sample of suggestive alters by the new SQL editor

An example of such process is like explaining the query

execution plan of SQL query generated by the user. The

decision again rests with the user whether to continue with the

present query or not depending on the comparison between the

average space and time requirements of all queries in the data

marts and the user generated a query. The generic algorithm is

as follows

1. Explain the user generated query execution plan based

on statistics maintained by the database.

2. Evaluate the average time and space requirements of all

queries in the mart.

3. Compare and decide whether to follow with present

query execution plan or change the query with better

economy.

To compare the performance of the system, there is few

suggestive training system which works in a similar manner.

This system will take less time to execute, less space because it

works on the data (clean SQL statements) stored on in local

host. Even this system can be embedded to low-cost PDAs for

quick accessing or referencing the SQLs.

5. Conclusion

A local suggestive engine for SQL developer is proposed. A

warehouse is developed using the marked data provided from a

reputed software development organization. The data marts are

prepared to group the SQLs based on functional similarities.

The association algorithms are used for calculating the

statistics of the 'uses of the patterns' of those experts in their

earlier projects. A dynamic SQL editor is proposed which help

to suggest the developers based on data from the warehouse by

inspecting the 'keyword' those they provided on this editor.

ADBU-Journal of Engineering Technology

 27 AJET, ISSN: 2348-7305, Volume 4(1), 2016

They system the warehouse and dynamic suggestive SQL

editor will be very useful to the junior developer or future

developer who are studying in college or universities. In future,

we intend to enhance the system for academic purposes. Such

system will help students learn the best practices to write SQL

queries.

References

[1] B Dageville, D Das, K Dias, K Ragout, M Zait, M.

Ziauddin.Automatic SQL tuning in oracle

10g.In Proceedings of the Thirtieth international

conference on Very large data bases-Volume 30 (pp.

1098-1109).VLDB Endowment, 2004.

[2] G Harrison. Oracle SQL High-Performance Tuning.In

Prentice Hall Professional Technical Reference,2000.

[3] P Belknap, B Dageville, K Dias & K Yagoub. Self-

tuning for SQL performance in Oracle database

11g.In Data Engineering, 2009.ICDE'09. IEEE 25th

International Conference on (pp. 1694-1700). IEEE,

2009.

[4] S Agrawal, S Chaudhuri, L Kollar, A Marathe, V

Narasayya, M Syamala. Database tuning advisor for

microsoft SQL server 2005: demo. In Proceedings of the

2005 ACM SIGMOD international conference on

Management of data (pp. 930-932).ACM, 2005.

[5] J Han, J Pei, Y Yin. Mining frequent patterns without

candidate generation.In ACM SIGMOD Record (Vol. 29,

No. 2, pp. 1-12). ACM,2000.

[6] J Han ,J Pei, Y Yin, R Mao. Mining frequent patterns

without candidate generation: A frequent-pattern tree

approach. Data mining and knowledge discovery, 8(1),

53-87, 2004.

[7] DE Knuth, JH Morris, Jr., VR Pratt. Fast pattern matching

in strings. SIAM journal on computing, 6(2), 323-350,

1977.

[8] TS Quah, MMT Thewin. Prediction of Software

Development Faults In PL/SQL Files using Genetic Nets,

WSEAS Trans. on Commn., Issue1, Vol. 3, pp228-

233,2004.

[9] S Chaudhuri, R Krishnamurthy, S Potamianos, K

Shim.Optimizing queries with materialized views.

In icde (p. 190). IEEE,1995.

[10] Karthik, PG Thippa Reddy,E K Vanan. Tuningthe SQL

Query in order to Reduce Time Consumption. IJCSI

International Journal of Computer Science , 2012.

[11] H Herodotou,S Babu. Xplus: A sql-tuning-aware query

optimizer.In Proceedings of the VLDB Endowment, 3(1-

2), 1149-1160, 2010.

Author Profile

Shahid Zaman Barbhuiya,is MTech (CSE)

student of School of Technology, Assam Don

Bosco University. He completed his

Bachelors in Engineering from APIIT SD

India in 2013 and currently pursuing his

Masters in Technology in Computer Science

and Engineering. His specialization is Data

Mining.

Biplab Kumar Ray, MTech (CSE) student

of School of Technology, Assam Don Bosco

University. He completed his Bachelors in

Engineering in 2012. Currently pursuing his

Masters in Technology in Computer Science

and Engineering. His specialization is Data

Mining.

Zenith Azim, is MTech (CSE) student of

School of Technology, Assam Don Bosco

University. She completed her Bachelors in

Engineering from same University in 2012.

Currently pursuing his Masters in Technology

in Computer Science and Engineering with

specialization is Data Mining.

Yumnam Jayanta, is working as Professor

and Head of Dept of Computer Science &

Engineering and IT, School of Technology,

Assam Don Bosco University, Guwahati. He

has received his PhD from Dr. B.A

Marathwada University in 2004. He has

worked with Swinburne University of Technology (AUS) at

Malaysia campus, Misurata University, Keane (India and

Canada), Skyline University College (UAE) etc. His research

areas are ETL, Data Warehouse and Mining, Real-time

Database system, and Image processing. He has produced

several papers in International and National Journals and

Conferences. He also holds memberships of IACSIT, IETE,

IASTED, EUROSIS and IAENG etc.

