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Abstract: Elliptic Curve Cryptography (ECC) has recognized much more attention over the last few years and has time-

honored itself among the renowned public key cryptography schemes. The main feature of ECC is that shorter keys can be 

used as the best option for implementation of public key cryptography in resource-constrained (memory, power, and speed) 

devices like the Internet of Things (IoT), wireless sensor based applications, etc. The performance of hardware 

implementation for ECC is affected by basic design elements such as a coordinate system, modular arithmetic algorithms, 

implementation target, and underlying finite fields. This paper shows the generic structure of the ECC system 

implementation which allows the different types of designing parameters like elliptic curve, Galois prime finite field GF(p), 

and input type. The ECC system is analyzed with performance parameters such as required memory, elapsed time, and 

process complexity on the MATLAB platform. The simulations are carried out on the 8
th

 generation Intel core i7 processor 

with the specifications of 8 GB RAM, 3.1 GHz, and 64-bit architecture. This analysis helps to design an efficient and high 

performance architecture of the ECC system on Application Specific Integrated Circuit (ASIC) and Field Programmable 

Gate Array (FPGA). 

 

Keywords: Elliptic Curve Cryptography (ECC), Galois Field (GF), Discrete Logarithm Problem (DLP), Scalar 
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I. INTRODUCTION 

     Elliptic Curve Cryptography (ECC) has emerged as an 
assured public-key cryptography approach for data security. 
It is a public-key cryptography system that supports the 
algebraic structure of elliptic curves over finite fields. ECC is 
relevant to both the discrete logarithm algorithm and integer 
factorization families. ECC provides security based on the 
complexity of solving the Discrete Logarithm Problem 
(DLP) over a group of points on the elliptic curve [1]. Along 
with its advantage in terms of bandwidth and performance, it 
offers a similar security level as it is provided by RSA 
(Rivest–Shamir–Adleman) or discrete logarithm systems 
with extensively shorter keys [2]. 

 ECC provides grow of different application area from 

securing internet protocols to embedded systems in the form 

of wireless sensor networks, Radio-Frequency 

Identification(RFID) devices, and smart cards [3]. ECC 

system's performance is determined by the efficient 

implementation of the arithmetic operation in the underlying 

finite field. ECC system that is completely realized in 

software offers the lowest cost and a high degree of 

flexibility. Detailed literature regarding the efficient 

implementation of ECC software can be found in [4].  The 

software implementation is slower compared to hardware 

implementation due to impractical in time-constrained 

environments that need fast processing. Due to this 

limitation, hardware implementation becomes a more 

suitable option [5]. 

     Recently all the designs mostly vary in the underlying 

finite field (GF(2
m
) and GF(p)). The software and hardware 

co-approach recognized through an enhanced architecture in 

the form of a coprocessor. It is referred to as a software and 

hardware co-design.  It is observed for both the underlying 

finite field. A computational system with multiple 

heterogeneous elements that have limited capabilities is 

considered a constrained environment. The limitation arises 

in terms of storage memory, communication bandwidth, 

processing time, area, and processing power. The resource-

constrained devices are Internet of Things (IoT) nodes, 

RFID tags, and wireless sensor network motes. In recent 

times, to provide high-security service to new generation 

device with limited resources is the greatest challenge in the 

area of data security. The security algorithms are restricted 

in utilization by bandwidth, hardware, limited power, high 

speed in real time application, and limited memory [5]. The 

real time application requires the same level of security 

services as conventional applications even though having 

limited memory and power [6].   

     The hierarchy of the computations concerned in the 

implementation of ECC cryptosystems is characterized in 

four levels of operations as shown in Fig.1.The foundation 

of the ECC system is defined by the finite field arithmetic or 

modular operations. It carries the squaring, addition, 

inversion, and multiplication operations. Point addition and 
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point doubling are the basic building blocks of ECC. 

Repeating point addition and point doubling operations are 

used to perform scalar multiplication. The scalar 

multiplication concept is used in the ECC cryptosystem 

encryption and decryption process [7].     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                          
                           Figure 1: Level of ECC system [2] 

 

      The efficient designing of the ECC processor in the 

hardware platform depends on the various ECC system 

parameters from the upper layer to the lower layer of the 

system as shown in Fig.1. Different system parameter 

provides a challenge to formalize a design structure of ECC 

in the hardware platform [2].       

Section II presents the related work of some important 

publications related to ECC implementation. Section III 

presents a short introduction to the theoretical background 

and inspiration for ECC. Section IV presents an 

implementation of ECC on MATLAB and the simulation 

results with considering the different designing parameters. 

Section V presents conclusion and summary of the 

simulation results. It also presents a limitation of ECC and a 

glimpse of future application areas. 

II. RELATED WORK 

     Yan and Chien [8] have implemented an efficient scheme 

to calculate the finite field multiplication for ECC point. It 

supports high speed encryption of the message using a 

dynamic lookup table manner for the decryption and 

encryption process. The multiplication method is over 70% 

faster than the standard multiplication by the Russian 

Peasant  method. 

    Sumit and Brahmjit [9] considered the various important 

aspects of the ECC system such as finite fields, variety of 

curve models, and curves together with the attacks on ECC 

and implemented ECC on the NIST curve p256 with 

ElGamal encryption. Laiphrakpam and Khumanthem [10] 

have proposed the algorithm that can do encryption and 

decryption on type of script with described ASCII values. 

Srinivasan and Raju [11] have proposed a novel encryption 

technique of ECC for securing an image that transmits over 

a public unsecured channel. This technique uses magic 

matrix operation for providing strong security. Thirumalesu 

and Sakthivel [12] have proposed a novel hardware 

architecture for ECC scalar multiplication in Jacobian 

coordinates on the prime field. It consists of point addition 

and point doubling architecture. This architecture supports 

attaining the low hardware resources and high speed using a 

resource sharing concept which is synthesized both in Field 

Programmable Gate Array (FPGA) and Application Specific 

Integrated Circuit (ASIC). 

     Mainul and Selim [13] have proposed a high-

performance modular multiplier. The proposed multiplier 

has been implemented on Virtex-7 to Virtex-4 series FPGA 

platforms over the various NIST recommended prime fields 

p192, p224, p256, p384, and p521. Mainul and Selim [14] 

have implemented the ECC processor on FPGA. This 

architecture supports low-area, high-speed, and side-channel 

attacks resistant ECC processor on a prime field. The 

processor carries 256-bit point multiplication on the recently 

suggested twisted edwards curve. Design and implemented 

multi-key elliptic curve cryptosystem with high-throughput 

for fast prime field and energy-adaptive dual-field [15]-[18]. 

 

III.   BASIC CONCEPT 

The ECC system is designed on the mathematical 

concepts of elliptic curves and was proposed by Neal 

Koblitz [19]. An elliptic curve over any field R can be 

defined as the set of all solutions (x; y) ϵ R x R that fulfill 

the following general Weierstrass “(1)”, where ai lie in    

field R. 

 

               y
2 
+ a1xy + a3y = x

3
 + a2x

2 
+ a4x + a5                      (1) 

 

Cryptographic application ensures high security because 

it uses the non singular elliptic curves (a1 = 0; a4 = 0). When 

R is a finite field, often considered as a Galois Field GF(q), 

the order of q is equivalent to the number of elements in the 

Galois finite field. A Galois Field of order q only permits if 

q is a prime power (q = p
m
), where m and p indicate positive 

integer and a prime number respectively. O defines the point 

at infinity and is also measured as a point on the curve. The 

various finite fields are used for cryptographic applications 

such as binary fields GF(2
m
), prime fields GF(p), and 

extension fields. Mainly, the use of the extension field is not 

as frequent as the first two fields. Each field is outfitted with 

a set of arithmetic operations, mainly defined by additions 

and multiplications. Elliptic curve multiplication and 

addition makes the use of underlying finite field arithmetic 

operation.  

2.1 Elliptic Curves 

 The general Weierstrass equation represents a cubic 
curve E over a field F is shown in  “(1)” where a1, a2, a3, a4, 

a5  F and the discriminant of  E is not equal to zero [16]. 
Alongside this, there is a specified point at infinity which is 

denoted as . From the general Weierstrass equation, any 
elliptic curve E in its standard form can be written as:  

                         E: y
2
  x

3
  ax  b                                 (2) 

     Where the value of a, b are predefined. Fig. 2 

represents y
2
  x

3
  x 1 over the real (R) field when the 

value of a = −1 and b = 1 are considered. It needs to 

define binary operation over the elliptic curve because it 

 



 

ADBU-Journal of Engineering Technology 

 

 

Patel, AJET, ISSN:2348-7305, Volume 9, Issue 2, December, 2020 009021403(7PP)  

 

satisfies the abelian group. All operations of the abelian 

group are commutative and some of the operations are 

shown here. 

 

 

 

 

 

 

 

 

 

Figure 2: Elliptic curve where a  1 and b  1 [15] 

 

      Consider P and Q are the two points in the curve. P  Q 

where P  Q   outcome in a new point R as (P  Q  R ). 

If P  Q doesn’t intersect the elliptic curve, it defines that      

P  Q is equal to infinity (P  Q   ). This type of outcome 

happens when P  Q  P(x, y), Q(x,  y). The results of 

the operation define the other point if P   or  Q  . As 

example P , then P  Q    Q  Q.  2P is represented 

as P + Q where P  Q    and 2P is equal to infinity ( 2P 

  ) when the y-coordinate is equal 0.It can be defined 

that P   Q  O   O  O when P  Q = . 

The coordinate points of the elliptic curve are used for 

the cryptographic system operation on the elliptic curve over 

the finite field. Elliptic curve equation over a finite field is 

defined as “ (3)”.  

                   y
2 
= {x

3
 + ax + b} mod {p}                         (3)   

   

A certain elliptic curve point operations are used for the 

cryptographic function which is defined here. All functions 

are targeted for the GF(p).
 

2.1.1  Point addition on elliptic curve 

The initial generator points of curve are two point P(x1, y1) 

and Q(x2, y2) and both are distinct.  The P + Q is defined as   

P + Q = R(x3, y3) and it is given by the following 

calculation. 

x3 = {λ
2
 − x1 − x2} mod p  ;  y3 = {λ(x1 − x3) − y1} mod p 

where λ = (y2 − y1 / x2 − x1 ) mod p. 

2.1.2  Point doubling on elliptic curve 

Now considered that the two point P(x1, y1) and Q(x1, y1)  

are overlapped. In this case the P + Q is defined as P + Q = 

R(x3, y3) and it is given by the following calculation. 

 x3 = {λ
2
 − 2x1} mod p  ;   y3 = {λ(x1 − x3) − y1} mod p 

where  λ =  ( (3x1
2
 + a) / 2y1 ) mod p 

 

 

 

2.1.3  Point multiplication on elliptic curve 

Let consider that P is any point on the elliptic curve. 

Repeated additions are used to calculate multiplication 

operation over P. It is represented as follows. 

kP = P + P + P +· · · + k times. 

2.1.4  Point at infinity on elliptic curve 

The points is said to intersect at infinity denoted by O               

if x1 = x2 and y1 = y2 = 0 or x1 = x2 and y1 = −y2 [10]. 

2.2  Elliptic Curves over GF(p) 

The cryptographic system uses integer points instead 

of real points across the curve. Let consider that  E be an 

elliptic curve and GF(p) be the finite field with P 

elements. It needs to consider x  0, 1, . . . , p  1 for the 

calculation of all the points in the finite field GF(p). The 

finite field F191 on curve  E: y
2
  x

3
+2x+5  is shown in 

Fig. 3. 

 The elliptic curve has asymmetric feature over y 

coordinate so it is assured that every valid x–coordinates 

point on the curve can represent y-coordinates in two diverse 

points. It is defined as a (mod p) and [ p  a ] (mod p) where 

a is the square root value in modulo p operation. The 

number of points on the elliptic curve over the finite field is 

computed and an estimation of the number of points N is 

generated. 

 

 

 

 

 

 

 

 

        Figure 3:  Elliptic curve point on the finite field F191 
     

NIST has suggested the various standard elliptic curves and 

finite field which can be used for implementing ECC 

efficiently. The GF(233) and GF(521) are used for the 

simulation of the ECC system here. 
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IV.  IMPLEMENTATION AND ANALYSIS 

     We have integrated different modules of the Elliptic 

Curve Cryptosystem on MATLAB platform to study the 

mathematical operation and tried to find out the effective 

variable to improve the performance of the system. The 

variable of the cryptosystem plays a major role in 

performance parameters like memory requirement, speed of 

the encryption and decryption, type of the input, and 

complexity of the system. 
The generic structure of the ECC is implemented which 

allows the selection of various types of the elliptic curve, a 
different type of input, and various types of Galois prime 
field GF(p). This cryptosystem has forced different possible 
variables and analyzes the cryptosystem It also observes the 
pattern of encryption point on the elliptic curve and the 
position of each point concerning the XY coordinate system.  

This generic structure has selected the different Galois 
prime field and compared the elapsed time of encryption and 
decryption and also compared the memory consumption of 
specific input and prime field. Based on the simulation 
results we have proposed an efficient Elliptic Curve 
Cryptosystem. 

Initially, The cryptosystem is implemented using the 
elliptic curve shown in ”(3)”. This curve has the 
characteristics as shown in Fig. 4. The encryption and 
decryption process on this curve is executed.  This curve 
follows all the required characteristics of ECC  such as 
symmetric about the axis and third point available on the 
curve. Also, It follows the discrete logarithm problem which 
provides stronger security features. 

 

 

 

 

 

 

 

 

 

  

 Figure 4: Elliptic curve Y2 = X3 + 7 

 

Initially, the cryptosystem has selected the Galois prime 

field GF(233) and generated the possible point on the 

elliptic curve Y
2
 = X

3 
+ 7 as shown in Fig. 5. The 

cryptography needs the finite field so all the mapping and 

arithmetic operation executes under the modulo operation of 

Galois prime Field. Some of the points of encryption point 

are shown in table 1 with reference to the coordinates 

system. Based on the random number, the private key is 

selected and generates the public key using the arithmetic 

modulo operation on the elliptic curve. These possible 

points are used to map each message ASCII value on the 

curve. With the consideration of the elliptic curve and 

generator point of the curve, the shared key means public 

key is generated. The encryption process encrypts the 

message with the help of the private key. 
 
 

Table1: Coordinate position on Elliptic Curve for GF(233) 

 
X - Coordinate 

position on 

curve 
215 42 150 198 92 191 18 

Y - Coordinate 

position on 

curve 
0 1 85 2 3 53 108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
              Figure 5: ECC point on the elliptic curve for GF(233) 

 

ECC is an asymmetric type of cryptography which 

means it uses two different types of keys for encryption and 

decryption. The public key is used to encrypt the message 

and the private key is used to decrypt the message. The 

encryption process executes and encrypts the message with 

the help of the public key. The mapping of each character of 

input on the elliptic curve is performed.                 
The cryptosystem has selected the function parameter 

such as elliptic curve  Y
2
 = X

3
 + 7 mod p  where input text 

size is 1 KB  and Galois prime Field is GF(233). The output 

of the encryption is shown in Fig. 6 in terms of encryption 

point on the elliptic curve. Encryption point generated after 

the modular arithmetic operation when public key and the 

shared key is 212 and 58 respectively in Galois prime field 

GF(233).   
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   Figure 6: Encryption points on the curve Y2 = X3 + 7 of GF(233) 

 

     The encrypted message is transmitted and the receiver 

receives the message and decrypts the message with the help 

of the private key and generates the original message back. 

Based on the various private key, the elapsed time and 

memory consumption is compared in table 2. Elapsed time 

is the average time of 10 times simulation results for the 

given specific parameters. 

 
Table 2: Function Parameters Comparison for GF(233) 

 

     The simulation results show that the cryptographic 

process uses less memory and less elapsed time when the 

system is forced with private key 94 and public key 109 for 

the selected curve and finite prime field. Result clearly 

shows that there is a tradeoff between elapsed time and 

memory for the other value of private key and public key. 

The input size decides the performance of the cryptosystem. 

The ECC system is simulated with the increased input size 

and simulation results are compared in table 3. The effective 

parameters are forced to the system such as elliptic curve        

Y
2
= X

3
+7 mod p, input text size 10 KB, and Galois prime 

field GF(233).  

 
Table 3: Simulation results comparison for Input size 10 KB and GF(233) 

 

 

 

     The simulation results show that the cryptographic 

process uses less elapsed time when private key and public 

key are 152 and 168 respectively. It also shows that the 

cryptographic process uses less memory when private key 

and public key are 192 and 5 respectively. 

     The performance of the cryptosystem depends on the 

selection of the elliptic curve, so in the second phase, the 

simulation is carried out on the curve Y
2
 = X

3
+ 2X+5 mod 

p. The function parameters are selected such as input text 

size is 1 KB and Galois prime field GF(233). The simulation 

results are shown in table 4.   

 

 

Table 4: Simulation results of GF(233) for input size 1 KB  

 

     The simulation results clearly suggest that the ECC 

system gives efficient performance when the private key and 

public key are 15 and 126 respectively.  Now, the system is 

simulated with an increased input size of 10 KB, and the 

remaining function parameters are considered the same as 

previous. The simulation result analysis is shown in table 5. 

 
Table 5: Simulation results of GF(233) for input size 10 KB 

 

     The comparison result shows that there is a tradeoff 

between elapsed time and memory for different values of 

private key and public key.  The balance performance is 

achieved by the value of private key and public key are 160 

and 175 respectively. The Galois prime field plays a very 

important role in the strength of security[16]. The NIST 

suggests some standard prime field. The cryptosystem has 

selected GF(521) from the NIST standard and simulated this 

system. For GF(521) and elliptic curve Y
2
 = X

3 
+ aX + b, 

the possible curve points are mapped as shown in Fig. 7. 

These all points follow the features of elliptic curve. With 

increasing points on the curve, the security level is also 

increased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
     Figure 7: ECC point on the elliptic curve for GF(521) 

 

Sr. 

No.  

Random  

Number 

    ( K)  

Private 

Key  

Public 

Key  

  Elapsed 

Time      

(second)  

Memory 

used  

(KB) 

1 124 6 48 0.202361 50 

2 31 94 109 0.193078 40 

3 3 47 116 0.199403 89 

4 39 53 65 0.207299 128 

5 104 8 101 0.215078 44 

6 2 97 135 0.193301 60 

Sr. 

No. 
Random 
Number 

( K) 

Private 

Key 
Public 

Key 
Elapsed 

Time      

(second) 

Memory 
used 

(KB) 

1 187 98 176 0.390009 1304 

2 214 85 135 0.098616 1444 

3 153 192 5 0.180150 184 

4 218 170 195 0.100642 488 

5 174 152 168 0.094326 610 

6 40 132 176 0.098770 1520 

Sr. 

No. 
Random 

Number 

( K) 

Private 

Key 

Public 

Key 

Elapsed 

Time      

(second) 

Memory 

used 

(KB) 

1 136 87 53 0.225200 452 

2 199 15 126 0.197295 60 

3 120 36 171 0.196724 212 

4 56 8 95 0.313080 60 

5 56 19 14 0.191335 80 

6 211 5 210 0.232228 572 

Sr. 

No. 
Random 
Number 

( K) 

Private 

Key 
Public 

Key 
Elapsed 

Time      

(second) 

Memory 
used 

(KB) 

1 192 20 200 0.091018 380 

2 222 64 42 0.096431 60 

3 89 88 150 0.094349 64 

4 44 160 175 0.101638 32 

5 151 90 199 0.092816 1520 

6 65 151 06 0.092652 1260 
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        The output of the encryption is shown in Fig. 8 in 

terms of encryption point on the elliptic curve. Encryption 

point generated after the modular arithmetic operation when 

public key is 178 and the shared key is 458 in Galois prime 

field GF(521). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
       Figure 8: Encryption points on the curve Y2 = X3 + 2X + 5 of GF(521) 

 

     To analyze the ECC system on various standard GF(p), it 

is simulated for the GF(521) and other functional parameters 

such as elliptic curve Y
2
 = X

3
 + 2X + 5 mod p and input text 

Size 10 KB. The simulation analysis is shown in table 6. 

 
 Table 6: Simulation results of GF(233) for input size 10 KB 

 

For a selected finite field GF(521), the comparison 

results recommend the value of private key (25) and public 

key (487) for the balanced performance of the ECC system. 

To identify the effective parameters of the ECC system for 

the various GF(p), the simulation results are summarized in 

a chart. The output of the cryptosystem for the GF(233) and 

GF(521) are presented in Fig. 9 and Fig. 10 respectively. In 

all simulations the curve is Y
2
 = X

3
 + 2X + 5 mod p  and 

text size is 10 KB considered. 

     The Cryptosystem is simulated with the various Galois 

prime field and simulation results are compared in a chart. 

The elliptic curve  Y
2
 = X

3
 + 2X + 5 mod p  and input text 

size is fixed in this comparison chart. 

 

 

 

 

 

 

 

 

 

Figure 9: Comparison chart of GF(233) on curve Y2 = X3 + 2X + 5 

 

 
 

 

 
 

 

 
 

 

 
 

Figure 10: Comparison chart of GF(521) on curve Y2 = X3 + 2X + 5 

 

    The comparison chart shows the tradeoff between speed 

and memory with the value of private key and public key 

over the GF(233) and GF(521). From Fig. 10, the system 

can identify the private key 25 and public key 487 which 

uses less power and less elapsed time. This comparison 

result helps to identify effective parameters for hardware 

implementation such as private key, public key, and type of 

curve. An effective parameter uses fewer hardware 

resources and useful in resource constrains applications. 

V.  CONCLUSION 

    The generic and efficient architecture of ECC is presented 

in this paper. Based on the simulation results, the effective 

parameters for ECC like Galois prime field, type of curve, 

and private key can be decided. These effective parameters 

decide the performance and security level of the ECC 

system. The effective parameters make efficient and high 

performance cryptosystem and they help to integrate 

cryptosystem efficiently on FPGA and ASIC hardware. The 

proposed architecture supports various GF(p), which 

provides higher security to the system because of the DLP 

features. The ECC architecture is limited to third order of 

elliptic curve. The proposed ECC architecture is suitable for 

platforms and resource constrains applications like 

Electronics Commerce, Chip based payment card, Social 

Media, Digital Currencies, Military Communication, and E-

health that require efficiency in terms of area, speed, and 

power consumption. 
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