Nanomaterial-based Sensing of Low-concentration NO2 Gas: A Review
Abstract
Keywords
Full Text:
PDFReferences
Swathilakshmi and S. Anandhan, “Recent development in carbon dot-based gas sensors,” Sens. Diagn., vol. 1, no. 5, pp. 902–931, 2022, doi: 10.1039/D2SD00074A.
S. Sawalha et al., “Carbon-dots conductometric sensor for high performance gas sensing,” Carbon Trends, vol. 5, pp. 100105, Oct. 2021, doi: 10.1016/j.cartre.2021.100105.
J. Xuan et al., “Low-temperature operating ZnO-based NO 2 sensors: a review,” RSC Adv., vol. 10, no. 65, pp. 39786–39807, 2020, doi: 10.1039/D0RA07328H.
R. Borgohain, R. Das, B. Mondal, V. Yordsri, C. Thanachayanont, and S. Baruah, “ZnO/ZnS Core-Shell Nanostructures for Low-Concentration NO2 Sensing at Room Temperature,” IEEE Sensors J., vol. 18, no. 17, pp. 7203–7208, Sep. 2018, doi: 10.1109/JSEN.2018.2851196.
A. Yadav and N. Sinha, “Nanomaterial-based gas sensors: A review on experimental and theoretical studies,” Materials Express, vol. 12, no. 1, pp. 1–33, Jan. 2022, doi: 10.1166/mex.2022.2121.
S. Chaudhary, A. Umar, K. Bhasin, and S. Baskoutas, “Chemical Sensing Applications of ZnO Nanomaterials,” Materials, vol. 11, no. 2, pp. 287, Feb. 2018, doi: 10.3390/ma11020287.
S. Park, S. An, H. Ko, C. Jin, and C. Lee, “Synthesis of Nanograined ZnO Nanowires and Their Enhanced Gas Sensing Properties,” ACS Appl. Mater. Interfaces, vol. 4, no. 7, pp. 3650–3656, Jul. 2012, doi: 10.1021/am300741r.
M.-W. Ahn et al., “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor,” Applied Physics Letters, vol. 93, no. 26, pp. 263103, Dec. 2008, doi: 10.1063/1.3046726.
H. Nguyen et al., “Controllable growth of ZnO nanowires grown on discrete islands of Au catalyst for realization of planar-type micro gas sensors,” Sensors and Actuators B: Chemical, vol. 193, pp. 888–894, Mar. 2014, doi: 10.1016/j.snb.2013.11.043.
X. Chen et al., “In-situ growth of ZnO nanowire arrays on the sensing electrode via a facile hydrothermal route for high-performance NO2 sensor,” Applied Surface Science, vol. 435, pp. 1096–1104, Mar. 2018, doi: 10.1016/j.apsusc.2017.11.222.
E. Oh et al., “High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation,” Sensors and Actuators B: Chemical, vol. 141, no. 1, pp. 239–243, Aug. 2009, doi: 10.1016/j.snb.2009.06.031.
S. Bai, T. Guo, D. Li, R. Luo, A. Chen, and C. C. Liu, “Intrinsic sensing properties of the flower-like ZnO nanostructures,” Sensors and Actuators B: Chemical, vol. 182, pp. 747–754, Jun. 2013, doi: 10.1016/j.snb.2013.03.077.
F. Fan, Y. Feng, S. Bai, J. Feng, A. Chen, and D. Li, “Synthesis and gas sensing properties to NO2 of ZnO nanoparticles,” Sensors and Actuators B: Chemical, vol. 185, pp. 377–382, Aug. 2013, doi: 10.1016/j.snb.2013.05.020.
Y. Xia et al., “Nanoseed-assisted rapid formation of ultrathin ZnO nanorods for efficient room temperature NO2 detection,” Ceramics International, vol. 42, no. 14, pp. 15876–15880, Nov. 2016, doi: 10.1016/j.ceramint.2016.07.058.
R. Borgohain, R. Das, B. Mondal, V. Yordsri, C. Thanachayanont, and S. Baruah, “ZnO/ZnS Core-Shell Nanostructures for Low-Concentration NO2 Sensing at Room Temperature,” IEEE Sensors J., vol. 18, no. 17, pp. 7203–7208, Sep. 2018, doi: 10.1109/JSEN.2018.2851196.
S. Park, S. An, Y. Mun, and C. Lee, “UV-Enhanced NO2 Gas Sensing Properties of SnO 2 -Core/ZnO-Shell Nanowires at Room Temperature,” ACS Appl. Mater. Interfaces, vol. 5, no. 10, pp. 4285–4292, May 2013, doi: 10.1021/am400500a.
I.-S. Hwang et al., “Synthesis and gas sensing characteristics of highly crystalline ZnO–SnO2 core–shell nanowires,” Sensors and Actuators B: Chemical, vol. 148, no. 2, pp. 595–600, Jul. 2010, doi: 10.1016/j.snb.2010.05.052.
L. L. Mokoloko, R. P. Forbes, and N. J. Coville, “The Transformation of 0-D Carbon Dots into 1-, 2- and 3-D Carbon Allotropes: A Minireview,” Nanomaterials, vol. 12, no. 15, pp. 2515, Jul. 2022, doi: 10.3390/nano12152515.
C. Wang et al., “Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions,” Materials Research Bulletin, vol. 124, pp. 110730, Apr. 2020, doi: 10.1016/j.materresbull.2019.110730.
A. Prasannan and T. Imae, “One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels,” Ind. Eng. Chem. Res., vol. 52, no. 44, pp. 15673–15678, Nov. 2013, doi: 10.1021/ie402421s.
S. Sawalha et al., “Carbon-dots conductometric sensor for high performance gas sensing,” Carbon Trends, vol. 5, pp. 100105, Oct. 2021, doi: 10.1016/j.cartre.2021.100105.
M. Cheng et al., “Carbon dots decorated hierarchical litchi-like In2O3 nanospheres for highly sensitive and selective NO2 detection,” Sensors and Actuators B: Chemical, vol. 304, pp. 127272, Feb. 2020, doi: 10.1016/j.snb.2019.127272.
Copyright (c) 2023 Golam Imran Hussain, Rashi Borgohain

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Download the AJEEE paper template and submit your paper at the PAPER SUBMISSION page.
ADBU Journal of Electrical and Electronics Engineering (AJEEE) - ISSN: 2582-0257 is an International peer-reviewed Open-Access Online journal in the English language that publishes scientific articles which contribute new novel experimentation and theoretical work in all areas of Electrical and Electronics Engineering and its applications. |
* The views, interpretations and opinions expressed in the articles are those of the author(s) and should not be considered to reflect the opinions of the Editorial Board of this journal- AJEEE.
![]() | This Journal is published under the Creative Commons Attribution 4.0 International License (CC-BY). |