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1.  Introduction 
 

A very small change in a process can have a  large 

impact on the end result. The change in 

proportions, temperature, flow, tolerance, and 

many other factors must be carefully and 

persistently controlled to yield the desired end 

product with a very limit of raw materials and 

energy. Process control technology enables 

manufacturers to keep their operations running 

with specified limits and set more precise limits to 

maximize profitably, ensure quality and safety. The 

Process industries include the chemical industry, 

the oil and gas industry, the food and beverage 

industry, the water treatment and the power 

industry. 

 

Process control can lower variability in the 

end product, thereby ensuring a consistently high-

quality product. A process variable is a condition of 

the process fluid that can change the manufacturing 

process in some way. The controller is a device that 

receives data from a measurement instrument, 

compares the data to a programmed set-point, and, 

if necessary, signals a control element to take 

corrective action [20]. 

 

SMC is an important robust control 

approach. The class of systems for which it applies, 

SMC design provides a systematic approach to the 

problem of maintaining accuracy, robustness,   

stability, easy tuning, and consistent performance 

in the face of modelling imprecision  [1]. There are 

two major advantages of sliding mode control. 

First, the dynamic behaviour of the system may be 

tailored by the particular choice of a sliding 

function. Secondly, the closed loop response 

becomes totally unresponsive to some particular 

uncertainties. Due to this property, this principle 

extends to model parameter uncertainties, also any 

disturbances and non-linearity that are bounded in 

the systems. From a practical point of view, an 

SMC enables controlling of nonlinear processes 

subjected to the external disturbances and heavy 

model uncertainties. 

 

There are some modelling inaccuracies 

that can occur in these controllers. It can be 

classified into two major kinds- structured (or 

parametric) uncertainties and unstructured 

uncertainties (or un-modelled dynamics). The 

former kind corresponds to inaccuracies on the 

terms actually included in the model, while the 

later kind deals with the inaccuracies on the system 

order. One of the  important approaches to deal 

with model uncertainty is robust control [1]. 

 

2. Theoretical Background 
 

The SMC is a two-part controller design. The first 

part associates with the design of a sliding surface 

so that the sliding motion satisfies the design 

specifications dealt with it. The second focuses on 

the selection of a control law that will make the 

switching surface attractive to the system state [3]. 

 

One job is to investigate the variable 

structure control (VSC) as a high-speed switched 

feedback control, resulting in the sliding mode. The 

aim of the switching control law is to drive the 

nonlinear plant's state trajectory onto a pre-

specified   (user-chosen) surface in the state space 

and to maintain the plant’s state trajectory on this 

surface for a subsequent time, the surface being 

termed a switching surface. When the plant’s state 

trajectory is “above” the surface, the feedback path 
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has some gain, which is different if the trajectory 

drops “below” the surface. This surface helps us to 

define the rule for proper switching. This surface is 

also called a sliding manifold. Ideally, once 

intercepted, the switched control retains the plant’s 

state trajectory on the surface for all the successive 

time and the plant’s state trajectory slides along 

this surface. The most crucial task is to develop a 

switched control that will drive the plant state to 

the switching surface and maintain it on the surface 

upon interception [1]. 

 

If we can control and restrict the dynamics 

of the system to lie on a well-behaved surface, then 

the control problem is greatly simplified. It is 

defined in such a way that the error dynamics are 

exponentially stable when the system is restricted 

to lie on this surface. The control problem, which 

minimizes the problem of driving the system to this 

surface, and then ensuring that it stays on this 

surface all the time [2], a Lyapunov approach is 

used to characterize this task. The Lyapunov 

method is usually used to determine the stability 

properties of an equilibrium point without solving 

the state equation. Let V(x) is a continuously 

differentiable scalar function defined in a domain D 

that contains the origin. A function V(x) is said to 

be positive definite if V(0) = 0 and V(x) > 0 for x. It 

is said to be negative definite if V(0) = 0 and V(x) > 

0 for x. The Lyapunov method is to assure that the 

function is positive definite when it is negative and 

function is negative definite when it is positive. In 

that way, the stability is assured. For each chosen 

switched control structure, particular “gains” can 

be selected so that the derivative of this Lyapunov 

function is negative definite, thus assuring the 

motion of the state trajectory to the surface. After 

the proper design of the surface, a switched 

controller is developed with the tangent vectors of 

the state trajectory pointing towards the surface so 

that the state is driven to and maintained on the 

sliding surface. Such controllers introduces 

discontinuous closed-loop systems [1]. 

 

Let us consider a single input nonlinear 

system, defined as 

 
 

Here, x(t) is a state vector, u(t) is a control input 

and x is the output state of the interest [1]. The 

other states in the state vector are the higher order 

derivatives of x up to the (n-1)
th

 order. The 

superscript n on x(t) shows the order of 

differentiation. f(x,t) and b(x,t) are generally 

nonlinear functions of time and states. The function 

f(x) is not exactly known, but the extent of the 

imprecision on f(x) is upper bounded by a known, 

continuous function of x; similarly, the control gain 

b(x) is not exactly known, but is of known sign and 

is bounded by known, continuous functions of x.  

A time-varying surface s(t) is defined in the state 

space by equating the variable s(x,t), defined 

below, to zero. 

 
 

Here, δ is a strict positive constant, taken to be the  

bandwidth of the system, 

 

x͂(t) = x(t) – xd (t) is the error in the output state, 

where is the desired state. 

 

The strategy to converge to the sliding 

mode is that we can add something to u(t), which 

will drive us to the sliding mode in a finite time. In 

summary, the motion consists of a reaching phase 

during which trajectories starting off the manifold 

s(t) move toward it and reaches it in finite time, 

followed by a sliding phase during which the 

motion is confined to the manifold s(t) and the 

dynamics of the system are represented by the 

reduced-order model. The manifold s(t) is called 

the sliding manifold and the control law u(x)sgn(s) 

is called sliding control mode [2]. 

 

Moreover, bounds on s can be directly 

translated into bounds on the tracking error vector 

x͂(t), and therefore the scalar s represents a true 

measure of tracking performance.  

 

The corresponding transformations of performance 

measures assuming  = 0 is: 

 

 
where ɛ = ϕ/δ 

n-1
 

 

In this way, an n
th

 order tracking problem can be 

replaced by a first-order stabilization problem. 

 

The simplified first-order problem of 

keeping the scalar s at zero, can now be achieved 

by choosing the control law u of Eqn. (1) such that 

outside of s(t) 

 
 

Eqn . (4) states that the squared “distance” to the 

surface, as measured by s
2
, reduces along all 

system trajectories. Thus, it constraints trajectories 

to point towards the surface s(t). In particular, once 

on the surface, the system trajectories are 

maintained on the surface. Strictly speaking, 

satisfying the sliding condition makes the surface 

an invariant set (a set for which any trajectory 

starting from an initial condition within the set, 

remains in the set for all future and past times). 

Furthermore, Eqn. (4) also denotes that some 

disturbances or dynamic uncertainties can be 
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tolerated while still keeping the surface an invariant 

set. 

 

Finally, satisfying Eqn. (2) guarantees that 

x(t = 0) is actually off x
d 

(t = 0), the surface s(t) will 

be reached in a finite time smaller than |s(t = 0)|/η. 

 
Figure 1: Graphical interpretation of Eqns. (2), (4) 

(for n = 2) [19] 

 

3. Controller Design 

 
The controller design procedure can be divided in 

two steps. In the first step, a feedback control law u 

is selected to verify the sliding condition in Eqn. 

(4).  But, in order to account for the presence of 

modelling imprecision and of disturbances, the 

control law has to be discontinuous across s(t). 

Since the implementation of the corresponding 

control switching is imperfect, this leads to 

chattering (Figure 2), which is undesirable in 

practice as it involves high control activity and may 

excite high-frequency dynamics neglected in the 

course of modelling [1]. Hence, in the second step, 

the discontinuous control law u is suitably 

smoothed to achieve an optimal trade-off between 

control bandwidth and tracking precision. The first 

step accomplishes robustness for parametric 

uncertainty; the second step achieves robustness to 

high-frequency unmodeled dynamics. 

 

Consider a simple second order system, 

 
where f (x,t) is generally nonlinear and/or time-

varying, and can be estimated as ; u(t) is the 

control input; x(t) is the state to be controlled such 

that it follows the desired trajectory xd (t) [1]. The 

estimation error on f(x,t) can be assumed to be 

bounded by some known function F = F(x,t), so 

that 

 
We define a sliding variable according to Eqn. (2). 

 
Differentiation of the sliding variable yields 

 
Substituting Eqn. (5) in Eqn. (8), we have 

 

The approximation of control law û(t) to achieve  

ṡ(t) = 0 is: 

 
û(t) can be thought of as the best estimate of the 

equivalent control. 

 

To accommodate uncertainty in f while satisfying 

the condition 

 

The control law can be taken as: 

 

By selecting k(x,t) large enough, such as 

 
ensures the satisfaction of condition in Eqn. (11), 

since 

 
 

Hence, by using Eqn. (12), we ensure that the 

system trajectory will take a finite time to reach the 

surface s(t), after which the errors will 

exponentially reduce to zero. 

 

Now considering another second order 

system in the form of 

 
 

where b(x,t) is bounded as  

 
 

The control gain b(x,t) and it’s bound can be time-

varying or state dependent. Because the control 

input is multiplied by the control gain in the 

dynamics, the geometric mean of the lower and 

upper bound of the gain is an acceptable estimate:  

 

 
Then, bounds can be written as 

 
  

Since the control law will be designed to be robust 

to the bounded multiplicative uncertainty, β is 

called the gain margin of the design. 

 

It can be proved that the control law  

 ….. (15) 

 

with 

 
       .......... (16) 

satisfies the sliding condition. 
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4. Chattering Reduction  

 
An ideal sliding mode occurs only when the state 

trajectory x(t) of the controlled plant agrees with 

the desired trajectory at every t ≤ t1 for some t1 . 

This may require infinitely fast switching. In real 

systems, a switched controller has inadequacy 

which limits switching to a finite frequency. The 

representative point then oscillates within a 

neighbourhood of the switching surface. This 

oscillation, called chattering [1], is illustrated in 

Figure 2. 

 
 

Figure 2: Chattering as a result of imperfect 

control switching [19] 

 

We have to note that the controller is 

discontinuous at s(t). Due to the effects of 

sampling, switching and delays in the devices used 

to implement the controller, respectively in the 

simulation engines used when modelling the 

controlled system,  sliding mode control suffers 

from chattering The next figure shows how delays 

can cause chattering. It depicts a trajectory in the 

region s(t) heading toward the sliding manifold s(t). 

It first hits the manifold at a point a. In ideal sliding 

mode control, the trajectory should start sliding on 

the manifold from a point a. In reality, there will be 

a delay between the time the sign of s changes and 

the time the control switches. During this delay 

period, the trajectory crosses the manifold into the 

region s(t) [2]. 

 

There are many strategies used to avoid 

chattering; e.g., you can introduce a boundary 

layer. Here, the sgn function is made continuous by 

using a piecewise linear approximation. Within the 

boundary layer, you have exponentially 

convergence to the sliding mode. You rely on 

continuity arguments to show that the system will 

still converge [2]. 

 

Chattering results in low control accuracy, 

high heat losses in electrical power circuits and 

high wear of moving mechanical parts. It may also 

excite unmodeled high-frequency dynamics, which 

degrades the performance of the system and may 

even lead to instability [2]. 

 
3(a) 

 

 
3(b) 

 

Figure 3: (a) When s < 0 and s > 0   

       (b) When s = 0 [2]. 

 

Control laws which satisfy the sliding 

condition in Eqn. (4) and lead to “perfect” tracking 

in the face of model uncertainty, are discontinuous 

across the surface s(t), thus causing control 

chattering. Chattering is undesirable as it involves 

extremely high control activity and besides, may 

excite high-frequency dynamics neglected in the 

course of modelling. Chattering must be reduced  

(or eliminated completely if possible) for the 

controller to perform properly. This can be 

achieved by smoothing out the control 

discontinuity in a thin boundary layer neighbouring 

the switching surface. 

 

 
 

where ϕ is the boundary layer thickness, and  

ɛ = ϕ / λ 
n-1

 is the boundary layer width.  
 

That means, outside of B(t), we choose 

control law as mentioned earlier, which assures that 

the boundary layer is attractive, hence invariant. 

All the trajectories starting inside B(t = 0) remain 

inside B(t) for all t ≥ 0, and then u is interpolated 

inside B(t); e.g., sgn(s) in Eqn. (12) can be replaced 

by 
𝑠

∅
  inside B(t). 

 

5. Existing Case Studies 
 

In a research done by Ruben Rojas, Oscar 

Camacho and Luis Gonzalez [4], a first order plus 

dead time model of the process for controlling 

open-loop unstable systems. The proposed 
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controller has a simple and fixed structure with a 

set of tuning equations as a function of the desired 

performance. Both linear and non-linear models 

were used to study the controller performance by 

computer simulations. 

 

In the research by Oscar Camacho and 

Carlos A. Smith [5], has shown the synthesis of a 

sliding mode controller based on a FOPDT model 

of the actual process. The controller obtained is of 

the fixed structure. A set of equations obtains the 

first estimates for the tuning parameters. The 

examples presented indicate that the SMC 

performance is stable and quite satisfactory in spite 

of non- linearity over a wide range of operating 

conditions. 

 

In the research work by Chyi-Tsong Chen 

and Shih-Tien Peng [6], a novel and systematic 

sliding mode control system design methodology is 

proposed, which integrates an identified Second-

Order Plus Dead-Time (SOPDT) model, an optimal 

sliding surface and a delay-ahead predictor. 

Besides, with the concept of delay equivalent, the 

proposed sliding mode control scheme can be 

utilized directly to the regulation control of a non-

minimum phase process. 

 

In the research by B. B. Musmade, R. K. 

Munje and B. M. Patre [7], a simple SMC strategy 

is designed based on the linearization of the 

nonlinear process model. This method is applied 

for the continuous yeast fermentation process. To 

broaden the scope of this method applications are 

extended to non-minimum phase behaviour 

processes. In conclusion, the proposed sliding 

mode controller can yield a better dynamic 

performance than conventional controllers. It is 

proved that the performance of the sliding mode 

controller is more robust against set-point changes 

and disturbances compared to conventional 

strategies. 

 

In the research work by Hossein 

Nejatbakhsh Esfahani and Seyed Mohammad Reza 

Sajadi [8], SMC is developed for a class of 

nonlinear multi-input multi-output disrupted 

systems. In order to overcome the chattering 

problem and to ensure the tracking of desired 

trajectories, the authors proposed to combine an 

adaptive PD controller with the sliding mode. 

Based on the Lyapunov stability approach, the 

researchers suggested that their proposed adaptive 

sliding mode control scheme could guarantee 

global stability and the robustness of the closed-

loop system with respect to disturbance. 

 

In the research work by S. Mahieddine 

Mahmud, L. Chrifi-Alaoui, V. Van Assche and P. 

Bussy [9], the authors proposed a non-linear SMC 

with mismatch disturbances. The proposed method 

attenuates the effect of both uncertainties, external 

disturbances and eliminates the chattering 

phenomenon. The model of a hydraulic system is 

used to test the procedure. 

 

The work by Aamir Hashim Obeid Ahmed 

[10] addresses controlling the speed of a separately 

excited DC motor. A separately excited DC motor 

is generally controlled by Proportional plus Integral 

(PI) controller. PI controller is simple but sensitive 

to parameter variations and external disturbance.   

Hence, for the robustness of Sliding  Mode Control 

(SMC), especially against parameters variations 

and external disturbances, and also its ability in 

controlling linear and nonlinear systems; a  

separately excited DC motor sliding mode speed 

control technique is proposed in this paper.  The 

simulation results showed that SMC is a superior 

controller than PI controller for speed control of a 

separately excited DC motor. 

 

In the research work by Giuseppe Fedele 

[11], an identification method to estimate the 

parameters of a first order plus time delay model is 

proposed. Such a method directly obtains these 

parameters using a new linear regression equation. 

No iterations in the calculation are needed. A 

simple true/false criterion to establish if the 

hypothesis on the process type is correct can be 

easily derived. The proposed method shows 

acceptable robustness to disturbance and 

measurement noise as it is confirmed by several 

simulated experiments. 

 

The work by Farzin Piltan, Sara 

Emamzadeh, Zahra Hivand, Forouzan Shahriyari 

and Mina Mirzaei [12], demonstrates the 

MATLAB/SIMULINK realization of the PUMA 

560 robot manipulator position control 

methodology. This research focuses on two main 

areas, namely robot manipulator analysis and 

implementation, and design analyzed and 

implemented nonlinear Sliding Mode Control 

(SMC) methods. At present, robot manipulators are 

used in an unknown and unstructured situation and 

caused to provide complicated systems, 

consequently strong mathematical tools are used in 

new control methodologies to design a robust 

nonlinear controller with satisfactory performance 

(e.g., minimum error, good trajectory, disturbance 

rejection). 

 

In the research by Sarah Spurgeon in the 

year 2014 [13], various canonical forms to 

facilitate design, have been described, and many 

numerical examples have been presented to 

reinforce the theoretical discussions. Of particular 

importance is the case of digital implementation, or 

indeed digital design, of sliding mode controllers. 
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In continuous time, discontinuous control strategies 

fundamentally rely upon very high frequency 

switching to ensure the sliding mode is attained and 

maintained. The introduction of sampling is 

disruptive. For example, switching of increasing 

amplitude can take place about the sliding surface.   

In the research work by R. Saravana 

Kumar, K. Vinoth Kumar and Dr. K. K. Ray [14], 

the main objective was aimed at controlling the 

position of a field-oriented Induction Servo motor 

drive for a given reference input signal in a very 

efficient way. Their work was primarily focussed 

on designing a complete sliding-mode control 

system which would be insensitive to uncertainties, 

including parameter variations and external 

disturbances in the whole control process. They 

analyzed the design of an adaptive sliding- mode 

control system, which could adjust the bound of 

uncertainties in real time and also could reduce the 

chattering phenomena in the control effort using a 

simple adaptive algorithm. 

 

The research by Chintu Gurbani and Dr. 

Vijay Kumar [15], addresses the designing of a 

controller using various types of sliding mode 

control strategies. Sliding mode control uses 

discontinuous control laws to drive the system state 

trajectory onto a specified surface in the state 

space, the so-called sliding or switching surface, 

and to maintain the system state on this manifold 

for all the subsequent times. For achieving the 

control objective, the control input must be 

designed with authority sufficient to overcome the 

uncertainties and the disturbances acting on the 

system. 

 

In the research by Pushkin Kachroo and 

Masayoshi Tomizuka [16], a boundary layer 

around the switching surface was used to reduce 

chattering in sliding-mode control, and a 

continuous control was adapted within the 

boundary. The effects of various control laws 

within the boundary layer on chattering and error 

convergence in different systems were examined. 

New functions for chattering reduction and error 

convergence inside the boundary layer were 

suggested, which are discontinuous in magnitude 

only but not in sign. The internal model principle 

has been applied to generalize the design for the 

class of nonlinear systems being considered. 

 

The research work by Yong Feng, 

Xinghuo Yu and Zhihong Man in 2002 [17], 

presents a global non-singular terminal SMC for 

rigid manipulators. A new terminal sliding mode 

manifold is first proposed for the second-order 

system to enable the wiping out of the singularity 

problem associated with conventional terminal 

SMC. The time taken to reach the equilibrium point 

from an initial state is guaranteed to be finite time. 

The proposed terminal SMC is then applied to the 

control of n-link rigid manipulators. Simulation 

results are presented to validate the analysis. a 

global non-singular TSM controller for second-

order nonlinear dynamic systems with parameter 

uncertainties and external disturbances has been 

proposed. The time taken to reach the manifold 

from an initial system states and the time taken to 

reach the equilibrium point in the sliding mode 

have been proved to be finite. The new terminal 

sliding mode manifold proposed can enable the 

elimination of the singularity problem associated 

with conventional terminal sliding mode control. 

The global NSTM controller proposed has been 

used for the control design of an n-degree-of-

freedom rigid manipulator. They presented 

simulation results to validate the analysis. The 

proposed controller can be easily applied to 

practical control of robots as given the advances of 

the microprocessor and the variables with 

fractional power can be easily built into control 

algorithms. 

 

In the research by Goran Golo and 

Cedomir Milosavljevic [18], a new control 

algorithm based on discrete-time VSC theory was 

proposed. The basic feature of the algorithm is that 

trajectories reach the sliding manifold in a finite 

time, without chattering. Apart from stability, the 

robustness of the algorithm w.r.t. parameter 

uncertainties, as well as foreign disturbances,  is 

considered. The authors established that robustness 

could be improved by reducing the sampling 

period. The theory was illustrated on a DC servo-

position system. The realization of the proposed 

law requires knowledge of the state vector x. The 

control law has two modes. The first, non-linear 

mode ensures the reaching of the vicinity of the 

sliding hyperplane, in a finite number of steps.  The 

second, linear mode ensures that the system 

reaches the sliding hyperplane in one step in the 

absence of external disturbances and parameter 

uncertainties. The linear mode is obtained by the 

state feedback pole-placement technique. The main 

feature of the proposed algorithm was robustness 

with respect to disturbances and parameter 

variations. Moreover, since a continuous function 

is in the vicinity of the control law, the system will 

be chattering free. 

 

6. Future Directions 
 

It has been established that SMC can be made 

useable in any type of non-linear process. So, 

future research in this regard can be an efficient 

process controller for industrial processes using 

SMC. The SMC can be effectively used in 

controlling the errors in industrial processes. 
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7. Conclusion 
 

This review paper gives an overview of the concept 

of Sliding Mode Controller with a bibliographical 

survey of relevant background, practical 

requirements, the present state, and techniques.  It 

is based on many research articles published from 

the past years. The citations listed here provide a 

representative sample of current engineering 

thinking pertaining to the wheeling of process 

control of non-linear systems. 

 

The different process control techniques 

discussed here can be used for SMC. Process 

control systems (PCS) are pieces of equipment 

along the production line that can collect and 

transmit data during the manufacturing process. 

With its robustness properties, sliding mode 

controller can solve two major design difficulties 

involved in the design of a braking control 

algorithm: (i) The vehicle system is highly 

nonlinear with time-varying parameters and 

uncertainties; (ii) The performance of the system 

depends strongly on the knowledge of the tire/road 

surface condition [1]. 

 

For a class of systems to which it applies, 

a sliding controller design provides an organized 

approach to the problem of retaining stability and 

consistent performance in the face of modelling 

imprecision. For the wheel slip control system, the 

vehicle and brake system are highly nonlinear and 

time-varying systems. That makes a sliding mode 

controller ideal candidate for the application. 
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