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Abstract: Electric vehicles (EVs) is regarded as one of the most effective ways to reduce oil 

and gas use. EVs (electric vehicles) have many advantages over ICEVs (internal combustion 

engine vehicles), including zero pollution, little noise, and exceptional energy efficiency. 

Even though an EV is known to have a three times higher fuel efficiency than an ICEV, the 

driving range is often significantly lower because batteries have a lower energy density than 

gasoline or diesel. Over the next few decades, it is anticipated that the number of electric 

vehicles will increase significantly due to concerns about pollution and technological 

advancements in the sector. Utilizing a variety of energy sources will boost energy security 

while reducing emissions and fuel usage. A paradigm shift has been observed with the switch 

from internal combustion to electric car technology. For electric vehicles to become widely 

used, a charging infrastructure must be developed. However, there is a cap on the amount of 

electricity that can be used to charge the vehicles in a charging station. Rearranging charging 

times, specifically charging coordination can help optimize the distribution of the available 

power among the vehicles. In this paper, a review of the various coordinated charging 

methods has been presented. A detailed comparison of the methods has been done. 

. 
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1. Introduction  
  

Electric vehicles (EVs), which provide hope for 

reducing the greenhouse effect, have undergone 

extensive study. Thanks to developments in power 

electrics, energy storage, and support, the plug-in 

hybrid electric vehicle (PHEV) offers a competitive 

driving range and fuel economy in comparison to 

internal combustion engine vehicles (ICEV). By 

fostering the establishment of innovative, high-tech 

businesses, increasing energy security through the 

diversification of energy sources, and—most 

importantly—protecting the environment by 

lowering tailpipe emissions, electric vehicles (EVs) 

have the potential to boost economic growth. 

Electric vehicles are particularly cost-effective to 

operate since they have fewer moving parts to 

maintain and use little to no fossil fuels (petrol or 

diesel). While some electric cars (EVs) used lead 

acid or nickel metal hydride batteries, lithium-ion 

batteries are now regarded as the industry standard 

for modern battery electric vehicles because of their 

greater energy retention and an increased lifetime 

(self-discharge rate of just 5% per month). 

 

R.R. Kumar et al. [1] presented according 

to data, the number of academic studies on the 

subject of electric vehicles has significantly 

increased over the last 10 years. However, there 

haven't been any comprehensive studies that 

synthesize and integrate these findings. This study 

seeks to close that gap by employing an integrated 

review methodology. It includes an integrated 

assessment of 239 articles compiled from journals 

during the Scopus Q1 period utilizing an integrative 

review process. The five main types of variables 

included in this analysis are socio-demographics, 

mediators, moderators, consequences, and 

mediators. The research procedure produced a wide 

range of noteworthy results regarding research 

methodologies and local changes. The review 

highlights both relatively unstudied aspects like 

dealership experience, charging infrastructure 

resilience, and marketing strategies as well as 

extensively investigated ones like charging 

infrastructure development, the total cost of 

ownership, and purchase-based incentive schemes. 

Additionally, it highlights the mechanisms 

underpinning the adoption of electric vehicles by 

emphasizing crucial mediators and modifiers. The 

results would be valuable to both scholars and 
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policymakers as there have been a few earlier 

evaluations that have concurrently and thoroughly 

explored all sustainable consequence variables. The 

development of a comprehensive nomological 

network of electric vehicle adoption gave this study 

a new perspective. Stakeholders have a lot of 

information to evaluate when it comes to electric 

mobility thanks to the segment-specific key policy 

recommendations. 

 

This review paper is organized as follows. 

An approach from a few review papers of a survey 

for coordinating the charging of electric vehicles is 

presented in Section 4. The framework or model 

formulation for coordinating the charging of electric 

vehicles from a few review papers of a survey is 

described in Section 5. A Comparison between 

different Algorithms for the coordinated charging of 

EVs is defined in Table 1. The conclusion is defined 

in section 6. 

 

2. Charging Station  

 
As part of their future ambitions for smart cities, 

many countries will electrify their transportation 

infrastructure in an effort to increase environmental 

sustainability. As a result, there will be a dramatic 

rise in the number of electric vehicles (EVs) present 

in urban areas. The battery of an electric vehicle can 

be recharged in a variety of ways, but charging 

stations will be the main energy source. The 

locations of charging stations are essential; they 

should not only be widely dispersed so that an EV 

can easily access a charging station anywhere within 

its driving range, but also extensively dispersed so 

that EVs may travel the entire city after being 

recharged. An electric vehicle charging station is a 

piece of technology that can be used to refuel 

electric cars, neighborhood electric cars, and plug-in 

hybrids. While some charging stations are simpler 

than others, others have more advanced capabilities 

like Smart metering, cellular functionality, and 

network connectivity. The two primary types of 

charging stations are DC charging stations and AC 

charging stations. Batteries can only be charged 

using direct current (DC) electricity; the majority of 

electricity is delivered from the power grid as 

alternating current (AC). As a result, most electric 

vehicles have an "onboard charger," often known as 

an inbuilt AC-to-DC converter. 

 

 S. Acharya et al. [2] proposed that machine 

assiduity is edging away from conventional 

gasoline-powered vehicles as EVs grow in favor. As 

a result, the need for EV charging stations is 

growing., and they are being erected for both 

business and residential use in an effort to meet this 

demand. Intricate cyber-physical dependencies are 

created as a result of the interplay between EVs, 

EVCSs, and power grids. These dependencies can 

be cruelly exploited to negatively impact any of 

these components separately. This article outlines 

and examines the cyber risks that develop at this 

intersection and highlights existing and impending 

security holes in the EV charging ecosystem. These 

vulnerabilities need to be fixed as the number of EVs 

grows worldwide and their impact on the electrical 

system becomes more probable. The objective of 

this article is to compile and detail any backdoors 

that could be exploited to seriously degrade the 

power grid, EV and EVCS accessories, or both. The 

highlighted issues and challenges are intended to 

spur research on smart EV charging cybersecurity 

and enhancing power grid resilience generally 

against similar demand-side intrusions. 

 

3. Coordinated Charging 
 

The charging of EVs will create additional pressure 

on distribution networks, which were not initially 

designed to accommodate EVs. The current 

distribution system can support a small increase in 

EV use. However, it is projected that penetration 

levels will quickly rise over the next few years 

because of the price decrease, the availability of 

charging stations, and the wide spectrum of 

production. This added stress will have bad impacts 

if not managed properly. Increased system losses, 

increased operating expenses, and temperature limit 

violations brought on by overloading feeders and 

transformers are some of these repercussions. 

Distribution system operators must build smart EV 

coordination structures to manage EV load in order 

to rely on the infrastructure of upcoming smart grids. 

Because the power demand will exceed the 

capacities of the distribution transformers, phase 

unbalance may result in excessive current, and 

surplus power may lower the system's reserve 

capacity, uncoordinated charging will have a 

detrimental impact on the distribution network to 

meet the charging requirements of electric vehicles, 

it is necessary to establish a coordinated charging 

plan that maximizes the depth of discharge. a 

synchronized charge management strategy that 

incorporates offline optimization and online 

management. Power limit overages can be prevented 

by managing the combined regular load in 

residential areas and the charging load for electric 

vehicles using the power limit value collected from 

the non-control period. 

 

 G. A. Salvati et al. [3] proposed the idea of 

coordinating electric vehicle charging schedules. In 

order to account for the interdependence between 

the selection of stations, the charging options 

offered at each station, and the charging quantity 

settings, it formulates the EVCS problem as a 

hierarchical mixed-variable optimization problem. 

R. Jarvis et al. [4], in their research, presented a 

variety of network congestion scenarios, including 
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PEV charging at random locations and times, are 

investigated. A 24-hour load flow analysis is 

conducted using 5-minute time intervals, and the 

analysis is focused on the effects on distribution 

transformer performance. Investigation of PEV 

charger impacts on distribution transformers is 

required since they are essential components of the 

grid. The machine learning valley-filling (MLVF) 

technique is described in the publication by J. Garcia 

et al. [5] with the aim of enhancing plug-in electric 

vehicle (PEV) charging at the local power level 

while lowering the detrimental effects of 

uncontrolled PEV charging. In order to decide when 

to start charging a PEV, this study investigated 

whether a neural network algorithm could be trained 

to recognize low and high demand times in the 

anticipated baseload 

 

4. An approach from a few review 

papers of a survey for 

coordinating the charging of 

electric vehicles  
 

The following three points are the main 

contributions of the current study, according to a 

method offered by C. Zhou et al. [6]:  

1.  Calculations and simulations showed that 

disordered charging of EVs increases the peak-

valley difference in the power grid and coal 

consumption for the power supply but decreases 

the utilization rate of coal, increasing carbon 

emissions.  

2.  The government cannot force the EV charging 

load to reduce the peak load and improve the 

valley load if it only relies on the economic 

means of peak valley price.  

3.  The proposed economic incentive technology 

controls orderly charging.  

 

The following were suggested as the main 

contributions of the research by K. Zhou et al. [7]. 

The suggested technique starts by taking into 

account how urgently EV charging demand, as 

determined by a charging urgency indicator, must be 

met (CUI). Second, rather than being planned as a 

group, all EVs were scheduled in accordance with 

various charging requirements. Third, two different 

EV charging patterns were used in simulations to 

account for the uncertainty of EV charging behavior 

in order to show the usefulness of the suggested 

strategy applied in real circumstances. The findings 

shown that the suggested approach can transfer load 

demand from peak to valley periods and decrease the 

overall peak-valley load difference by scheduling 

EV charging in a coordinated manner, enhancing the 

safety and dependability of the microgrid. 

characteristics into account. To prevent the gassing 

of transformer insulation, the constraint function of 

a transformer operating limit is additionally applied. 

A technique for distributing EV charging spaces in 

an urban village network was suggested by C.   

Srithapon et al. [8] that accounts for the battery price 

arbitrage gain for the EV owner as well as the 

operational expenses of the DSO network, which 

includes the cost of transformer loss of life. The 

main goal of this optimization effort is to achieve the 

following goals: minimization of the loss costs 

associated with energy arbitrage, peak demand, 

network power loss, and transformer aging. The cost 

of a transformer's loss of life takes its thermal. H.  

Suyono et al. [9] presented a minimal power loss and 

voltage deviation optimal charging coordination 

method for a random arrival of PEVs in a residential 

distribution network. To further enhance the voltage 

profile, the method also uses capacitor switching 

and on-load tap changer adjustment. Using a 

hierarchical decision-making (HDM) approach, A.  

Zahedmanesh et al. [10] proposed developing a 

charge control system (CCS). With only a few minor 

modifications, this CCS may be quickly 

implemented for the dependable and affordable 

charging of commercial EVs while enhancing PQ in 

the power grids. A crude energy management 

technique and an adaptive droop control are both 

included in the HDM approach for real-time 

operation. J. Hu et al. [11] suggested that this paper 

coordinate the beneficial services and operational 

constraints of three actors: the EV owner, the Fleet 

operator (FO), and the Distribution system operator 

(DSO), taking into account the individual EV 

owner's driving requirement, the cost of charging the 

EV, and the thermal limits of cables and 

transformers in the proposed market framework. 

The first step is the description of a theoretical 

market framework. Within this framework, FOs 

who represent their customers' (EV owners') 

interests will centrally ensure the EV owners' 

driving needs and more affordably secure the energy 

for their vehicles. By coordinating DSO and FOs 

through a distribution grid capacity market plan, the 

congested area problem will be resolved. The 

market strategy is then described mathematically. 

To solve the scheduling problem involving several 

vehicle types, E. Yao et al. [12] proposed a novel 

solution (MVT-E-VSP). First, the MVT-E-VSP—

the scheduling problem of EBs for various vehicle 

types—is proposed. Second, an optimization model 

is created to reduce annual total scheduling 

expenses, which include the price of the EBs and 

chargers that are required, as well as the running 

costs of timetabled and deadheading journeys. The 

best answer is then discovered using a heuristic 

approach. R. Das et al. [13] suggested that multi-

objective technological, economic, and 

environmental optimization be used to plan the 

charging and discharging of electric vehicles. For 

the first time in the context of a home microgrid, 

end-user energy costs, battery deterioration, grid 

interactions, and CO2 emissions are modeled and 
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simultaneously optimized. S. Hussain et al. [14], 

proposed the charging cost optimization algorithm 

(CCOA) for electric vehicles (EVs) residential 

charging. By heuristically learning the real-time 

price trend and the EV's data, including the battery 

size, current state-of-charge, and arrival and 

departure schedules, the proposed CCOA organizes 

the charging of EVs.   

 

5. Framework or model formulation 

for coordinating the charging of 

electric vehicles from a few 

review papers of a survey 

 
Q. Deng et al. [16] studied the accommodation 

capability for electric vehicles of a distribution 

system considering coordinated charging strategies. 

Their model's primary goal is to increase ACE, 

while its secondary goal is to reduce the operational 

costs of the distribution system, which include the 

price of power purchased, the price of DG unit 

generation, the price of compensating loads for 

demand-side response, and the price of ESS 

compensation. Then, based on the linear 

combination, these two objective functions are 

normalized and integrated into one objective 

function. 

 

𝑂1
𝑏𝑗

=∑ ∑ 𝑃𝑖,𝑡
𝐸𝑉𝑁𝐸𝑉

𝑖=1
𝑇
𝑡=1  

𝑂2
𝑏𝑗

=∑ (∑ 𝐶𝑡
𝑠𝑁𝑛𝑜𝑑𝑒

𝑖=1
𝑇
𝑡=1 𝑃𝑖,𝑡

𝐺 +∑ 𝐶𝑔,𝑡
𝐷𝐺𝑃𝑔.𝑡

𝐷𝐺𝑁𝐷𝐺
𝑔=1 +      

∑ 𝐶𝑑,𝑡
𝐼𝐿 𝑃𝑑.𝑡

𝐼𝐿𝑁𝐼𝐿
𝑑=1 +∑ 𝐶𝑡

𝑇𝐿|𝑃𝑟,𝑡
𝑇𝐿|

𝑁𝑇𝐿
𝑟=1 +

∑ 𝐶𝑡
𝐸𝑆𝑆|𝛼𝑚,𝑡

𝑑 𝑃𝑚,𝑡
𝐸𝑆𝑆𝐷𝑁𝐸𝑆𝑆

𝑚=1 − 𝛼𝑚,𝑡
𝑐 𝑃𝑚,𝑡

𝐸𝑆𝑆𝐶|) 

𝑂𝑎𝑙𝑙
𝑏𝑗

=𝜔1𝑂1
𝑏𝑗

- 𝜔2𝑂2
𝑏𝑗

 

where T is the number of time periods in a day-ahead 

dispatch scheme and 𝑂1
𝑏𝑗

, 𝑂2
𝑏𝑗

, and 𝑂𝑎𝑙𝑙
𝑏𝑗

 are the 

model's ACE, operating costs, and aggregative 

objectives, respectively. 𝑃𝑖,𝑡
𝐸𝑉 represents the EV 

charging power at node i during time t. The number 

of nodes in the system that have EV charging 

stations is 𝑁𝐸𝑉. 𝑁𝑛𝑜𝑑𝑒 , 𝑁𝐷𝐺 , 𝑁𝐼𝐿, 𝑁𝑇𝐿 and 𝑁𝐸𝑆𝑆 are 

the numbers of nodes, DG units, interruptible loads, 

transferable loads, and the energy storage devices in 

the distribution system, respectively. 𝐶𝑡
𝑠, 𝐶𝑔,𝑡

𝐷𝐺, 𝐶𝑑,𝑡
𝐼𝐿 , 

𝐶𝑡
𝑇𝐿, and 𝐶𝑡

𝐸𝑆𝑆 stand for the cost of buying electricity 

from the upstream transmission system, the cost of 

producing one DG unit g, the cost of compensating 

for interruptible loads, the cost of compensating for 

transferable loads, and the cost of compensating for 

an energy storage device during the time period t, in 

that order. If node I is the slack bus, the upstream 

supply transformer will inject the necessary active 

power; otherwise, the injected active power at node 

I will be set to 0. 𝑃𝑖,𝑡
𝐺  is the active power injected at 

node I in time period t.𝑃𝑔.𝑡
𝐷𝐺  represents the actual 

output power of DG unit g (a photovoltaic or wind 

turbine unit) during time period t. 𝑃𝑑.𝑡
𝐼𝐿  is the active 

power reduction of the interruptible load d during 

the course of time t. 𝑃𝑟,𝑡
𝑇𝐿 is the active power that has 

been transfer from transferable load r over time t. 

Energy storage device m's active charging and 

discharging power are represented by 𝑃𝑚,𝑡
𝐸𝑆𝑆𝐶  and 

𝑃𝑚,𝑡
𝐸𝑆𝑆𝐷 , respectively, in time period t. Energy storage 

device m's charging and discharging states are 

represented, respectively, by the binary variables 

𝛼𝑚,𝑡
𝑐  and 𝛼𝑚,𝑡

𝑑 , which are both subject to the linear 

combination of the two normalised objective 

functions' weights 𝛼𝑚,𝑡
𝑐  + 𝛼𝑚,𝑡

𝑑  ≤ 1 and 𝜔1, 𝜔2>0. 

 

The coordinated charging optimization 

model's main goal is to reduce the load's peak-to-

valley disparity during the system scheduling 

period. 

Min 𝑃𝑐𝑢𝑡= 𝑃𝑝𝑒𝑎𝑘- 𝑃𝑣𝑎𝑙𝑙𝑒𝑦  

where 𝑃𝑐𝑢𝑡  represents the difference between the 

system load's peak and valley, 𝑃𝑝𝑒𝑎𝑘  and 𝑃𝑣𝑎𝑙𝑙𝑒𝑦 , 

respectively, represent the load's peak and valley 

during the system scheduling period. 

 

F. L. D. Silva et al. [17] proposed a model 

to extend SGs (Stochastic Games) to the Multi-

objective Partially Observable Stochastic Game 

(MOPOSG), which is made up of < S, U, D, P, 

𝑅1
01,..., 𝑅𝑛

0𝑛  >, where  the number of agents is n. S 

= 𝑆1 × · · · × 𝑆2 is the state space made up of each 

agent's local state space. U= 𝐴1 × … .× 𝐴𝑛is the joint 

action space, which is made up of the individual 

action spaces of each agent. The joint observation 

space D = 𝑍1 × … .× 𝑍𝑛 contains all potential 

arrangements of agent observations. P(sk, dk,uk, 

sk+1) signifies the probability of obtaining state 

sk+1 ∈ S and joint observation dk ∈ D after carrying 

out the joint action uk ∈ U in sk. P is the state and 

observation transition function. 𝑅𝑖
0𝑖 : S × U × S → 

𝑅0𝑖 is the agent Agi's reward function, and it 

represents a vector of oi rewards, one for each 

objective. 
 

S. Ayyadi et al. [18] proposed While 

preserving the required charging conditions, the 

charger's maximum power, and the subscribed 

power, the method of charging EVs attempts to 

reduce energy expenses. Monte Carlo simulations 

have been utilised to address the uncertainty relating 

to the arrival and departure times as well as the 

initial state of charge. Equation could be used to 

solve this optimization problem. 

min∑ ∑ (𝑝𝑟𝑡 + η𝑐𝑏𝑎𝑡)𝑥𝑡
𝑖∆𝑡𝑁

𝑖=1
𝑇
𝑡=1  

 

K. Zhou et al. [19] presented the state 

variable 𝑥𝑖,𝑗 is a binary variable in the optimization 
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model. If 𝑥𝑖,𝑗=0, the i-th electric vehicle (EV) is not 

charging during the j-th time slot; if 𝑥𝑖,𝑗=1, the i-th 

electric vehicle (EV) is charging during the j-th time 

slot. Equation is given as 

𝑥𝑖,𝑗={0,    𝑛𝑜𝑡 𝑖𝑛 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒
1,     𝑖𝑛 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒

 

The coordinated charging scheduling model's total 

load at the j th-time slot is given as 

 𝑃𝑇=𝑐
𝑗

= 𝑃𝑐𝑜𝑛
𝑗

+ ∑ 𝑥𝑖,𝑗  
𝑁
𝑖=1 . 𝑃𝐸𝑉,𝑖 

where, 

𝑃𝑐𝑜𝑛
𝑗

  = the basic load during j-th time slot. 

∑ 𝑥𝑖,𝑗 
𝑁
𝑖=1 . 𝑃𝐸𝑉,𝑖= Power that is provided for all the 

Evs in the j-th time slot. 

 

If the i-th Ev has an urgent charging demand, 𝑃𝐸𝑉,𝑖 

is equal to 𝑃𝐸𝑉
𝑓𝑎𝑠𝑡

 

If the i-th EV does not have an urgent charging 

demand, 𝑃𝐸𝑉,𝑖 is equal to 𝑃𝐸𝑉
𝑠𝑙𝑜𝑤 

 

The charge scheduling's goal is to lessen the 

microgrid's peak-valley load difference, and it is 

expressed as 

Min (𝑃𝑇=𝑐
𝑚𝑎𝑥  −  𝑃𝑇=𝑐

𝑚𝑖𝑛) 

Where, 𝑃𝑇=𝑐
𝑚𝑎𝑥  and  𝑃𝑇=𝑐

𝑚𝑖𝑛 are the maximal and 

minimal load demand, respectively. 

 

The model was proposed by K. Adetunji et 

al. [20]. In order to implement the Whale 

Optimization Algorithm (WOA) for intelligent 

control of EV charging, the proposed MOO model 

is evaluated. The MOO model is used to assess the 

fitness of each whale, and the best whale (final 

objective value) is updated as the leader and its 

position. The WOA method is used to update the 

locations further. The revised version makes use of 

the probabilistic model, which is described as 

Xt+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {

D⃗⃗  .ebl.cos(2πl)+Xt⃗⃗⃗⃗ 
X⃗⃗ −A.D⃗⃗  .p≥0.5

p<0.5
 

where [0, 1] is a range of possible numbers for p. 

𝑋𝑡+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑋𝑡 represent the next EV time slot and 

current best EV time slot respectively.  
 

Equation's lower sub equation illustrates 

the spiral process, while the top sub equation depicts 

the shrinking mechanism. Applying a random vector 

𝑟  results in the optimal EV time slot using the 

shrinking technique. In the definitions of 𝐴  and 𝐶 , 

this is evident. The formulas for them are 𝐴 =2𝑎 .𝑟  

and 𝐶 =2.𝑟 . In order to approximate a spiral shape, 

the spiral search is obtained by a similar process but 

with an additional 2l factor. 

where,  

                   𝑋𝑡+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   = 𝑋𝑟𝑎𝑛𝑑

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  - A. D⃗⃗  

                      D⃗⃗    = |C. 𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  −  𝑋𝑡  | 

Here, = 𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  and 𝑋𝑡 stand for the current 

iteration's random EV time slot, and current EV time 

slot D⃗⃗  is the distance between the current whale's 

position, 𝑋𝑡 , and the positions of the whales that 

were randomly chosen. 

 

Z. Yi et al. [21] presented the quadratic 

function shown is an example of an objective 

function that works well for valley filling in 

particular. This optimization framework can be 

expanded to satisfy various control requirements by 

developing the appropriate objective functions. For 

the purpose of choosing the control methods for 

PEV charging energy allocation for the following 

aggregator time step, the solution of the first time 

step, i.e., 𝑒𝑠𝑡𝑒𝑝 [p, 1], p = 1….,p, will be employed. 

 

Min f(𝑒𝑠𝑡𝑒𝑝 [p, i]) = ∑ (∑ 𝑒𝑠𝑡𝑒𝑝[𝑝. 𝑖]𝑃
𝑝=1

𝑁
𝑖=1  +

 𝐷𝑛𝑒𝑡[𝑖])
2 

𝑒𝑠𝑡𝑒𝑝 [p, 1] is the energy to be allocated for PEV p 

in time step I within the prediction horizon. 

 

V. S. Kasani et al. [22] presented the goal 

of this model is to maximize the number of vehicles 

that can be charged in a specific amount of time 

while meeting network and vehicle battery limits. 

equation is given by 

max∑ ∑ 𝑉𝑖𝑘
𝐿
𝑖=1

𝐾
𝑘=1 ∗ 𝐷𝑖𝑘 ∗ 𝐶𝑚𝑎𝑥 ∗ ∆ℎ 

 

The distribution transformer's capacity is 

𝑆𝑡 with a power factor ∅ of the charging station has 

L charging slots, with 𝐶𝑚𝑎𝑥 as the maximum 

charging power for each slot. In the optimization, 

the slot charging power is handled as a continuous 

variable that can take on any value between zero and 

the maximum charging power 𝐶𝑚𝑎𝑥. The battery 

management system receives 𝑆𝑂𝐶𝑡
𝐴 as the car 

arrives and starts charging. The PHEV owner enters 

the number of parking hours t, which establishes the 

number of coordinated charging time intervals, K = 

t/∆h, as well as the components of the charging 

station's slot matrix, 𝐷𝑙∗𝑘. If the slot is open for the 

car to charge, 𝐷𝑙𝑘 is equal to 1; otherwise, it is equal 

to 0. 𝐷𝑙𝑘  represents the condition of the slot l for time 

interval k. The optimization determines the charging 

power decision matrix 𝑉𝑙∗𝑘.  and 𝑏𝑙𝑘  = 1 denotes 

that the PHEV is permitted to charge with a charging 

power of 𝑉𝑙𝑘 * 𝐶𝑚𝑎𝑥 at slot l for time interval k, 

while 0 denotes the optimal battery condition. 

 

M. H. Hemmatpour et al. [23] presented to 

simultaneously decrease the operation cost, a multi-

objective optimization problem with four objective 

functions is given. 

OF = 𝐸𝑐𝑜𝑠𝑡  +  𝑇𝐶𝑐𝑜𝑠𝑡  +  𝑆𝐶𝑐𝑜𝑠𝑡  +  𝑉𝐷𝑐𝑜𝑠𝑡     
where 𝐸𝑐𝑜𝑠𝑡   denotes the cost of energy used, 𝑉𝐷𝑐𝑜𝑠𝑡  

is the cost of voltage variations, 𝑆𝐶𝑐𝑜𝑠𝑡  denotes the 
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cost of switching shunt capacitors, and 𝑇𝐶𝑐𝑜𝑠𝑡 

denotes the cost of changing transformer taps.  

 

The cost of energy consumption is 

calculated as follows: 

𝐸𝑐𝑜𝑠𝑡 = 𝛿𝑝𝐸𝑝  +  𝛿𝑞𝐸𝑞   
Where, 𝐸𝑝 (𝐸𝑞) is the total daily active (reactive) 

energy consumption, 𝛿𝑝(𝛿𝑞)  is the cost of active 

(reactive) power per KWh (KVAr) 

 

The cost due to voltage deviation at buses 

 

𝑉𝐷𝑐𝑜𝑠𝑡    = ∑ ∑ 𝑃𝑖,ℎ
𝐷

𝑖∈𝑁 𝑈𝐶𝑖,ℎ
𝑉𝐷

ℎ∈𝐻  

 

According to W.-L. Liu et al. [24], the 

EVCS problem is presented mathematically as 

follows:: 

 

Min f(S)                                                                   (a)                                                                                                                                                          

Subject to                                                                                                                          

max|𝑐𝑖 |≤J                                                                (b)                                                                                                                                       

𝜌𝑖
𝑡 ∈[0,1],∀𝑡,∀𝐼                                                      (c)                                                                                           

∑ 𝑓𝑠𝑡𝑎𝑡𝑢𝑠
𝑐ℎ𝑎𝑟𝑔𝑒

𝑖 (𝑖, 𝑗, 𝑜, 𝑡 ≤ 𝛾𝑗
0,𝑚𝑎𝑥

,∀𝑗, ∀𝑜, ∀𝑡               (d)                                                                                              

 

As a result, the problem model calls for the 

solution's fitness function, which aggregates the 

triple objectives of time cost, expense, and SoC gap, 

to be minimized. The number of charging stops for 

each EV within J is constrained by equation (a), both 

for the benefit of the actual driving experience and 

the effectiveness of the search process for schedule 

optimization. Equation (b) for the i-th EV gives 

relevant limitations for the range 𝛼𝑖
𝑡  and the energy 

level 𝛽𝑖
𝑡  as well as the feasible value range of its 

SoC at the t-th time slot 𝜌𝑖
𝑡. According to Equation 

(c), there can only be as many EVs charging at once 

at the j-th CS as there are 𝛾𝑗
0,𝑚𝑎𝑥

  chargers accessible 

at any given time. Here, ∑ 𝑓𝑠𝑡𝑎𝑡𝑢𝑠
𝑐ℎ𝑎𝑟𝑔𝑒

𝑖 (𝑖, 𝑗, 𝑜, 𝑡)   stands 

for a charging status checking function. If the i-th 

EV is charged by a charger using the o-th charging 

option at its j-th CS stop at the t-th time slot, its value 

is set to 1; otherwise, it is set to 0. 

 

M. Spitzer et al. [25] proposed two 

strategies: 

 

1. Cost Optimized Strategy: 

Charging schedules are designed to meet the needs 

of EV customers while using the least amount of 

energy possible. Constraints on the electrical grid 

need to be taken into account depending on the 

regulatory framework. 

minimize x   ∑ ∑ 𝑥𝑛,𝑡
𝑁
𝑛=1

𝑇
𝑡=1  . 𝑐𝑒𝑡  .∆𝑡 

The sum of all charging requirements for all vehicles 

at a time step is multiplied by the energy cost at the 

time step and the time step's length in equation, 

which represents the linear price objective function. 

The outcome is then total across all time steps. 

 

2. Valley Filling (VF) Optimized Strategy: 

This is the total variance over the optimization time 

horizon. 

minimize x   ∑
1

𝑁−1

𝑇
𝑡=1  ∑ (𝑥𝑛,𝑡 + 𝑏𝑡 −  𝜇𝑁

𝑛=1 )2. .∆𝑡      

GHG Emission Optimized Strategy 

The GHG emission function replaces the electricity 

price function in the objective function. 

minimize x    ∑ ∑ 𝑥𝑛,𝑡
𝑁
𝑛=1

𝑇
𝑡=1  . 𝑐𝑜𝑡  .∆𝑡 

 
5.1 Optimization Technique 

 
Q. Deng et al. [16] proposed Mixed-integer linear 

programming is the basis of the ACE evaluation 

model. The issue is resolved using the CPLEX 

solver, which is a Simplex method implementation 

on the YALMIP platform. It is then decided to use 

the Particle Swarm Optimization (PSO) algorithm to 

resolve the coordinated charging optimization 

problem. F. L. D. Silva et al.  [17] presented the use 

of a MOPOSG to represent the EV charging issue, 

with each agent having a local observation function 

in addition to a reward function for each objective. 

Given that MASCO is treated as a MOPOSG, it 

considers the partial observability and stochasticity 

that self-interested agents introduce. Unpredictable 

consumer behavior also raises the stochasticity of 

the environment. Like DWL, MASCO is a 

distributed solution. S. Ayyadi et al.  [18] suggested 

ideal charging strategy used in this work has met the 

battery's lower and upper bounds, the maximum 

power charger for EVs, the SOC requirements, and 

the subscribed power. To deal with the arrival and 

departure times as well as the initial state of charge 

uncertainty, Monte Carlo simulations have been 

used. K. Zhou et al.  [19] suggested model was 

created using MATLAB/YALMIP, and the CPLEX 

solver was used to resolve it. To imitate actual EV 

charging scenarios, the experiment's input data are 

produced at random using the probability density 

function. K. Adetunji et al.  [20] proposed MOO 

model which is evaluated in order to implement the 

Whale Optimization Algorithm (WOA) for 

intelligent control of EV charging. The strategies are 

conceptualized from the way whales feed. To move 

between these techniques, a probabilistic model is 

used. Z. Yi et al.  [21] proposed two distinct 

optimization routines- a one-stage direct 

optimization approach and a two-stage hierarchical 

optimization approach. In this paper, the 

optimization model for a centralized coordinated 

charge control framework is built using the one-

stage approach as a base. A two-stage optimization 

method is created by conducting hierarchical 

operations on a one-stage approach to handle large-

scale issues in a modest aggregate time step while 

using suitable computing resources. V. S. Kasani et 
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al. [22] proposed two optimization models, one for 

the battery electric vehicle (BEV) routing algorithm 

and the other for the personal rapid transit (PRT) 

system in a college setting. The second optimization 

model focuses on charging as many PHEVs as 

possible through the American Electric Power 

(AEP) utility grid. To reduce power system 

overloading, PHEV charging schedules are chosen 

using Mixed Integer Linear Programming (MILP). 

The best BEV charging schedule to meet 

transportation system passenger demand is also 

discovered using MILP. The PRT routing algorithm 

makes use of real-time data. To demonstrate the 

viability of the suggested techniques, a time series 

simulation of a distribution feeder test system is 

carried out. M. H. Hemmatpour et al.  [23] 

presented, to address the effects of EVs' 

coordination on energy and voltage regulation, an 

enhanced mixed real and binary vector-based swarm 

optimization technique is employed to optimize the 

distribution system's performance (EVC). W. L. Liu 

et al. [24] proposed to conduct the dynamic charging 

schedule for all considered EVs at a collection of 

CSs on a transportation network, they propose an 

EVCS system. To optimize the charging schedules 

of the EVs that are about to depart from their starting 

points or already visited CSs, this paper builds the 

dynamic EVCS system by calling Mixed-Variable 

Differentiate Evolution (MVDE) as a scheduling 

algorithm at every time slot. M. Spitzer et al.  [25] 

presented a three-phase system is used to represent 

the semi-urban low voltage grid in MATLAB's Simp 

scape Electrical environment. Transient states are 

not included in the model because it runs as a quasi-

steady model even though it operates in a time-

domain context. 

 

Table 1: Comparison between different Algorithms for coordinated charging of EVs 

 
Serial 

No. 

Algorithm Primary Objective Test System Reference 

No. 

1 Multi Objective Particle 

Swarm Optimization 

(MOPSO) algorithm and 

Monte Carlo simulation. 

 

The best scheduling of EV 

charging and discharging is 

developed with the goal of peak 

shaving, valley filling, and 

flattening the network load 

curve. 

 

The 69-bus IEEE radial 

test system's 50-bus test 

case, which was created 

by removing one of the 

lengthy, lightly laden 

lateral feeders, is used to 

test the proposed approach 

in the study. 

 

[15] 

2 A mixed-integer linear 

programming problem 

and a constrained 

optimization problem are 

included in the model that 

is being presented, and 

they are each addressed 

using CPLEX (the 

Simplex method 

implemented in the C 

programming 

language). added to the 

particle swarm 

optimization (PSO) 

algorithm 

An EV accommodation 

capability evaluation model of a 

distribution system is built and 

has large penetrations of flexible 

resources. 

In order to illustrate the 

suggested approach, a real 

distribution system in a 

coastal region of China is 

used. In this system, there 

are seven 110 kV 

substations, 376 nodes, 

368 branches, six 

photovoltaic units, two 

wind farms, and 51 nodes 

that are linked to EV 

charging stations. 

[16] 
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3 Q-Learning algorithm, in 

MASCO they used 

Reinforcement Learning 

(RL) 

Three competing objectives are 

intended to be simultaneously 

optimized by a multiagent multi 

objective reinforcement 

learning system. 

Battery Level - Agents strive to 

maximize it because customers 

need a high battery level before 

daily trip. 

Price Paid - Agents work to keep 

consumers' overall energy costs 

as low as possible. 

Transformer Overload - Agents 

specifically work to reduce the 

quantity of overloads. 

For a neighborhood of 30 

homes, each with one EV, 

a transformer safely 

supplies a maximum of 

40kWh. The EV batteries 

have a 24kWh capacity, 

with the Nissan Leaf 

serving as a point of 

comparison. 

[17] 

4 The use of Monte Carlo 

Simulations (MCS). With 

the linear programming 

method, the optimization 

problem is solved. 

An innovative method for 

reducing EV charging costs is 

presented and is based on the 

day-ahead electricity price 

(DAEP) and battery degradation 

cost subject to EV state of 

charge (SOC) limits, the 

maximum power charger, the 

EVs full charging at the end of 

the charging period, and the 

distribution feeder subscribed 

power. 

The performance of the 

suggested method has 

been assessed using a 

single-phase distribution 

network. This network has 

50 homes, and it is 

anticipated that each home 

has two electric vehicles, 

totaling a fleet of 100 EVs. 

[18] 

5 In order to implement the 

Whale Optimization 

Algorithm (WOA) for 

intelligent control of EV 

charging, the proposed 

MOO (Multi Objective 

Optimization) mode was 

evaluated. 

Based on a unique multi-

objective strategy, researchers 

concentrated on the best 

coordinated charging of electric 

vehicles in a centralized 

charging paradigm. Charger 

cost reduction, load variance 

reduction, and power loss 

reduction are the objectives. 

An IEEE 33-bus 

distribution network with 

a total capacity of 3.72 

MW and 2.3 MVAR was 

used to test the suggested 

model. The apparent 

power and voltage's base 

case values are 100 MVA 

and 12.66 KV, 

respectively. The 

maximum number of EVs 

the smart parking lot can 

hold is 500, and a 

maximum power of 8.90 

KW is taken into account. 

[20] 
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6 In this study, two distinct 

optimization routines—a 

one-stage direct 

optimization approach 

and a two-stage 

hierarchical optimization 

approach—are presented. 

A very effective receding 

horizon control technique is 

presented to enable dynamic 

charging coordination for 

sizable plug-in electric vehicle 

(PEV) populations. The 

individual PEV charging 

flexibility is aggregated using a 

two-stage hierarchical 

optimization method to lessen 

the computing complexity of the 

optimization process. 

The planned home PEV 

charging control 

framework has been 

developed by INL (Idaho 

National Laboratories) on 

a high-fidelity 

demonstration platform. 

In the control framework, 

a desktop acts as the 

aggregator to carry out 

centralized control 

techniques, such as one-

stage direct and two-stage 

hierarchical optimization. 

The Raspberry Pi card can 

mimic each household 

PEV based on information 

about its parking and 

charging requirements. 

[21] 

7 PHEV charging 

schedules are chosen 

using Mixed Integer 

Linear Programming 

(MILP). The PRT routing 

algorithm makes use of 

real-time data and a time 

series simulation of a 

distribution feeder test 

system is carried out. 

This develops a novel 

scheduling technique based on 

the scheduled mode of operation 

from the data provided by the 

West Virginia University's 

Department of Transportation 

and Parking, and proposes a 

concept of converting the 

guideway power rail propelling 

vehicles to battery-driven 

vehicles. The coordinated 

charging strategy for a charging 

station is designed to maximize 

the number of PHEVs charged. 

The AEP (American 

Electric Power) system's 

Feeder 2 is used to test the 

charging strategy because 

it has a mix of residential 

and commercial 

consumers as load types. 

Five charging stations are 

taken into account in this 

feeder. These stations are 

portrayed as price-

responsive customers who 

can take part in demand-

response initiatives. 

[22] 

8 Improved Mixed Real 

and Binary Vector-Based 

Swarm Optimization 

Algorithm.   

A solution to assess the effects 

of EVs and controllable loads on 

the EVC performance in power 

distribution networks is put 

forth. 

The suggested methodology in 

order to as closely as possible 

match the reality of distribution 

systems with the solution that 

was found. 

The capacitor switches and 

transformer taps can be chosen 

in accordance with the 

optimization model's ideal 

design while also minimizing 

the operation cost. 

The suggested method is 

tested using the seven-

lateral IEEE 69-bus test 

system and the IEEE 119-

bus test system. These 

systems' combined active 

(reactive) power outputs 

are 22709.7 kW (17041.1 

kVAr) and 3801.5 kW 

(2694.6 kVAr), 

respectively. 

[23] 
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9 Receding Horizon 

Optimization (RHO) 

based Network-aware EV 

charging (and 

Discharging) N-EVC(D) 

Network-aware EV Charging 

(and Discharging) N-EVC(D), a 

centrally coordinated EV 

charge-discharge scheduling 

technique that considers both 

EV customer economics and 

distribution grid restrictions, is 

proposed. 

 

According to the method 

used, the performance of 

the suggested EV charge-

discharge scheduling 

system is assessed on a 

modified IEEE 13 node 

test feeder. In particular, a 

single-phase model of the 

IEEE 13 node test feeder 

is used, eliminating all 

capacitor banks as well as 

the transformer between 

nodes 2 and 3. 

 

[26] 

 

 

6. Conclusion 

 
This study will analyze and compare the 

applications of EV demand management for 

coordinating transportation systems and creating an 

infrastructure based on the existing research. Both 

the electricity distribution network and the 

transportation network are impacted by EV charging 

requirements. Numerous investigations into the 

coordinated operation of interconnected networks 

have been made to identify the most effective 

individual EV routing, traffic flow directing, etc. 

Although the main study interests are modeling and 

methods for dealing with issues involving 

coordinated activities, economic aspects, and social 

behaviors should also be taken into consideration. 

The majority of the current study on the subject of 

designing the infrastructure for EV charging focuses 

on the optimal location and sizing of different types 

of EVCS, including FCS, BSS, and WCS. The 

secure operation of the power distribution network, 

constraints on traffic flow, or even the interaction 

between connected networks may be added as extra 

considerations. Future work will require taking into 

account a variety of uncertainties from the 

coordinating approach, user behavior, and system 

model combined. These risks must be taken into 

account together with the coordinated charging of 

electric vehicles due to the rapid expansion of 

renewable energies in the distribution systems. 
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