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Abstract: The realization of fractional-order circuits is an emerging area of research for 

people working in the areas of control systems, signal processing and other related fields. In 

this paper, an attempt is made to realize fractance devices. The continued fraction expansion 

formula is used to calculate the fractance device's rational approximation. For the simulation 

in the experimentation, the third-order approximation for fractional order, α = -1/2, -1/3,-1/4 

is used. For the aim of mathematical simulation, the MATLAB platform was used. The 

proposed rational approximation is used to create a circuit. The TINA programme is used to 

simulate circuits. It has been discovered that the simulation and theoretical conclusions are 

in agreement. 
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1. Introduction  
  

Fractional Calculus is the branch of mathematics 

whose existence is found to be more than 300 years 

[1]. The main objective of this branch is dealing with 

the generalization of integration and differentiation 

to an arbitrary order, α. That means the integration 

and differentiation operations are generalized in 

Fractional Calculus. This mathematical concept 

finds applications in control systems, 

Instrumentation, Physics, Signal processing, Image 

processing, Electric Circuits, and other allied fields 

[2].  

 

A fractional order differential equation is 

used to define a fractional order system. In the 

literature, it has been demonstrated that fractional 

order systems have an inherent attribute of limitless 

memory. For integer order systems, memory is 

limited. Fractional order systems include heat 

diffusion through solids, transmission lines, 

fractional order differentiators and integrators, and 

the nature of the hills. 

 

Fractance device is an example of a 

fractional order system. This device is also called as 

constant phase element, fractor etc. The defining 

mathematical equation is, Z(s) = 
𝑘0

𝑠𝛼 where k0 is a 

constant and s is a Laplace transform operator [3]. 

As the fractional order is changed, the behavior of 

the fractance device varies. For α = 0 it behaves as a 

resistor. It behaves as an inductor and capacitor as 

the value of α changes from -1 to +1. It functions as 

a Frequency Dependent Negative Resistor (FDNR) 

when the value is equal to 2 [2]. As a result, 

researchers are interested in the development of a 

fractance device.  

 

Many different realization approaches are 

discussed in the literature. The first attempt to study 

the characteristics of the fractance is done by 

Sorimachi et.al. There are many procedures for 

calculating the rational approximation of fractance 

device. Every method has its advantages and 

disadvantages [4, 5, 6, 7, 8, 13].  Recent papers 

reveal the progress of the physical realization of the 

fractance device [14, 15, 16]. But it is not yet 

realized practically. 

 

The goal of this study is to use the 

continued fraction expansion approach to create a 

fractance device. The circuit is constructed entirely 

of passive components. TINA software is used to 

test and plot the magnitude and phase responses of 

the proposed circuits. 

 

The paper is divided into five sections. 

Section 2 contains a literature review. Section 3 

explains the proposed methodology. Section 4 

contains the findings and discussions. Finally, in 

section 5, the conclusions are presented. 
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2. Literature Survey 
 

The creation of a fractance device is a long-standing 

and fascinating topic. For the realization, there are 

numerous approaches. Finding the rational 

approximation and realizing the calculated 

approximation are two of the approaches. Either 

passive or active aspects can be used in the 

realization. The capacitor functioning principle is 

the second method of realization. M. Nagakawa and 

K. Sorimachi [5] investigated the basic properties of 

the fractance device, in which they explored the 

analog realization of fractional controllers. The 

Nakagawa-Sorimachi circuit is a self-similar tree 

type circuit using resistors and capacitors [5]. 

 

Fractance devices can take the form of tree, 

chain, or net grid networks. In the literature, various 

recursive structural realizations have been presented 

[6, 7]. However, hardware complexity is a drawback 

[6, 7]. The cost of realization rises as the circuit 

complexity rises. 

 

Calculation of the rational approximation is 

discussed by many researchers. Oustaloup 

approximation is predicated on the recursive 

distribution of zeros and poles [2, 3]. Carlson 

approximation is predicated on the regular newton 

process [7]. During this method, because the order 

increases, the value and complexity increase. The 

Matsuda methodology provides continuous 

approximations of fractional plants obtained by 

identifying a model from its gain. Suppose that the 

fractional order operator is to be approximated 

by F(s). The gain must be determined at various 

frequencies, the number of which defines how many 

zeros and poles will be present in the approximation. 

2M +1 frequencies must be utilized for M zeros and 

M poles. It's best to use an odd number of 

frequencies; if you use an even number, the number 

of zeros will equal the number of poles plus one, and 

the model will be improper [8]. 

 

This study proposes and uses a rational 

approximation based on the continued fraction 

expansion approach for the realization of fractance 

devices. This paper discusses the realization of third 

order rational approximation. 

 

3.  Proposed Method  

In general, the differentiation and integration to the 

non-integer order are often represented by the 

operator, aDt
α, where the variable ‘α’ is the 

fractional order and ‘p’ and ‘t’ are the bounds of the 

operation. The fractional order 

differentiator/integrator in the time domain is 

defined [1] as: 

pDt
α = {

𝑑𝛼

𝑑𝑡𝛼                  𝛼 > 0,

1                    𝛼 = 0,

∫ (𝑑𝜏)𝛼         𝛼 < 0
𝑡

𝑝
.

 

 

… (1) 

The frequency domain representation of 

ideal differ-integrator with fractional order is 

𝐻(𝑠) = (𝑠)±𝛼 where ‘𝛼’ defines the fractional 

order and range of its value in between 0 to 1. The 

variable ‘𝑠’ equals to ‘𝑗𝜔’, where 𝜔 = 2𝜋𝐹 

radians/sec. 

                                  

A fractional order system with input 𝑥(𝑡) 

and 𝑦(𝑡) is governed [9] by the following equation: 

 

𝑎𝑛𝐷𝛼𝑛𝑦(𝑡) + 𝑎𝑛−1𝐷𝛼𝑛−1𝑦(𝑡) +
𝑎𝑛−2𝐷𝛼𝑛−2𝑦(𝑡) + ⋯ +

𝑎0𝐷𝛼0𝑦(𝑡) = 𝑏𝑚 𝐷
𝛽𝑚𝑥(𝑡) +

𝑏𝑚−1 𝐷
𝛽𝑚−1𝑥(𝑡) + ⋯ + 𝑏0 𝐷

𝛽0𝑥(𝑡)  

 

 

 

… (2) 

 

Where 

𝑎𝑛, 𝑎𝑛−1, 𝑎𝑛−2, … , 𝑎0 and 𝑏𝑚 , 𝑏𝑚−1,, … , 𝑏0  are 

system coefficients and the differentiation orders are 

integer multiple of based orders i.e., 𝛼𝑘 = 𝛽𝑘 =
𝑘𝛼.  

Applying the Laplace transform of 

equation (2) and setting the initial condition to zero, 

the transfer function is [9] : 

𝐻(𝑠) =
𝑌(𝑠)

𝑋(𝑠)

=
𝑏𝑚𝑠𝛽𝑚 + 𝑏𝑚−1𝑠𝛽𝑚−1 + ⋯ + 𝑏0𝑠𝛽0

𝑎𝑛𝑠𝛼𝑛 + 𝑎𝑛−1𝑠𝛼𝑛−1 + ⋯ + 𝑎0𝑠𝛼0
 

 

 

 

… (3) 

 

The main advantage of fractional orders 

over integer order systems is their ability to use 

infinite memory. In integer order systems, memory 

is finite.  

 

The generalized fractional differentiation 

and integration are used for determining the time 

integral and derivative of the given signal for any 

arbitrary order. Many definitions for calculating 

fractional orders are available in the literature. The 

two basic definitions of a fractional order difference 

integrator are Grunwald-Letnikov (G-L) and 

Riemann-Liouville (R-L) [1]. Grunwald-Letnikov 

(G-L) definition is, 

 

𝐷𝑡
𝛼𝑓(𝑡) = lim

ℎ→0

1

ℎ𝛼
∑ (−1)𝑖(𝛼

𝑖
)𝑓(𝑡 − 𝑖ℎ)∞

𝑖=0   …(4) 

 

Where  

(
𝛼

𝑖
) =

⎾(𝛼 + 1)

⎾(𝑖 + 1)⎾(𝛼 − 𝑖 + 1)
 

 

…(5) 

 

where⎾(. ) is Euler’s gamma function.  
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Riemann-Liouville (R-L) definition is, 

 

aDt
p f(t) = 

1

⎾(𝑛−𝑝)

𝑑𝑛

𝑑𝑡𝑛 ∫
𝑓(𝜏)

(𝑡−𝜏)𝑝−𝑛+1 𝑑𝜏
𝑡

𝑎
 

… (6) 

 

for (𝑛 − 1 < 𝑝 < 𝑛), where a and t are the limits of 

the operation aDt
p𝑓(𝑡).  

 

A. N. Khovanskii [11] has proposed the 

continued fraction expansion as follows: 

 

(1 + 𝑥)𝛼 =
1

1 −
𝛼𝑥

1+
1

2

(𝛼+1)𝑥

1−
1
6

(𝛼−1)𝑥

1+
1
6

(𝛼+2)𝑥

1−
1

10
(𝛼−2)𝑥

1+
1

10
(𝛼+3)𝑥

1−
1

14
(𝛼−3)𝑥

1+    ………..

 
… (7) 

 

This continued fraction expansion is 

convergence in the finite complex s-plane from 𝑥 =
−∞ to 𝑥 = −1 and substitute 𝑥 by (𝑠 − 1) to obtain 

the expansion of 𝑠𝛼. Now, truncated to some finite 

number of terms and obtain FODs and FOIs for 

various fractional orders 𝛼 =
1

2
,

1

3
 and 

1

4
 etc. 

Depending on the truncation order of CFE, the 

degree of denominator and numerator polynomials 

in the obtained rational transfer function have been 

changed. 

  

 

Table 1: Rational Approximations for fractional 

order    𝛼 = 
1

2
, −

1

2
 

 

Rational Approximations for 𝒔
𝟏

𝟐 using CFE method 

 
Number 

of 

terms 

Rational approximations 

2 𝐺2−1/2(𝑠) =
3𝑠 + 1

𝑠 + 3
 

4 𝐺4−1/2(𝑠) =
5𝑠2 + 10𝑠 + 1

𝑠2 + 10𝑠 + 5
 

6 𝐺6−1/2(𝑠) =
7𝑠3 + 35𝑠2 + 21𝑠 + 1

𝑠3 + 21𝑠2 + 35𝑠 + 7
 

8 𝐺8−1/2(𝑠) =
9𝑠4 + 84𝑠3 + 126𝑠2 + 36𝑠 + 1

𝑠4 + 36𝑠3 + 126𝑠2 + 84𝑠 + 9
 

10 

𝐺10−1/2(𝑠)

=
11𝑠5 + 165𝑠4 + 462𝑠3 + 330𝑠2 + 55𝑠 + 1

𝑠5 + 55𝑠4 + 330𝑠3 + 462𝑠2 + 165𝑠 + 1
 

Rational Approximations for 𝒔− 
𝟏

𝟐 using CFE method 

2 𝐻2−1/2(𝑠) =
𝑠 + 3

3𝑠 + 1
 

4 𝐻4−1/2(𝑠) =
𝑠2 + 10𝑠 + 5

5𝑠2 + 10𝑠 + 1
 

6 𝐻6−1/2(𝑠) =
𝑠3 + 21𝑠2 + 35𝑠 + 7

7𝑠3 + 35𝑠2 + 21𝑠 + 1
 

8 𝐻8−1/2(𝑠) =
𝑠4 + 36𝑠3 + 126𝑠2 + 84𝑠 + 9

9𝑠4 + 84𝑠3 + 126𝑠2 + 36𝑠 + 1
 

10 

𝐻10−1/2(𝑠)

=
𝑠5 + 55𝑠4 + 330𝑠3 + 462𝑠2 + 165𝑠 + 1

11𝑠5 + 165𝑠4 + 462𝑠3 + 330𝑠2 + 55𝑠 + 1
 

 

 

 

Table 2: Rational Approximations for fractional 

order        𝛼 = 
1

3
, −

1

3
 

 

Rational Approximations for 𝒔
𝟏

𝟑 using CFE method 
 

Number 

of terms 

Rational approximations 

2 𝐺2−1/3(𝑠) =
2𝑠 + 1

𝑠 + 2
 

4 𝐺4−1/3(𝑠) =
14𝑠2 + 35𝑠 + 5

5𝑠2 + 35𝑠 + 14
 

6 𝐺6−1/3(𝑠) =
7𝑠3 + 42𝑠2 + 30𝑠 + 2

2𝑠3 + 30𝑠2 + 42𝑠 + 7
 

8 

𝐺8−1/3(𝑠)

=
91𝑠4 + 1001𝑠3 + 1716𝑠2 + 572𝑠 + 22

22𝑠4 + 572𝑠3 + 1716𝑠2 + 1001𝑠 + 91
 

10 

𝐺10−1/3(𝑠) =
52𝑠5+910𝑠4+2860𝑠3+2288𝑠2+440𝑠+11

11𝑠5+440𝑠4+2288𝑠3+2860𝑠2+910𝑠+52
  

Rational Approximations for 𝒔− 
𝟏

𝟑 using CFE method 

2 𝐻2−1/3(𝑠) =
𝑠 + 2

2𝑠 + 1
 

4 𝐻4−1/3(𝑠) =
5𝑠2 + 35𝑠 + 14

14𝑠2 + 35𝑠 + 5
 

6 𝐻6−1/3(𝑠) =
2𝑠3 + 30𝑠2 + 42𝑠 + 7

7𝑠3 + 42𝑠2 + 30𝑠 + 2
 

8 

𝐻8−1/3(𝑠)

=
22𝑠4 + 572𝑠3 + 1716𝑠2 + 1001𝑠 + 91

91𝑠4 + 1001𝑠3 + 1716𝑠2 + 572𝑠 + 22
 

10 

𝐻10−1/3(𝑠) =
11𝑠5+440𝑠4+2288𝑠3+2860𝑠2+910𝑠+52

52𝑠5+910𝑠4+2860𝑠3+2288𝑠2+440𝑠+11
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Table 1 contains rational approximations of 

fractional orders α = 1/2, -1/2. Table 2 and Table 3 

shows a rational approach to using CFE for one-

third and one-quarter differentiators and integrators, 

respectively.  

 

Figure 1, 2 show the amplitudes and phase 

responses of the analog differentiator and integrator 

of half order respectively. Figures 1(a) and 2(a) are 

the magnitude responses and Figures 1(b) and 2(b) 

are phase responses. Figures 3-6 demonstrate the 

responses of the one-third and one-fourth fractional 

order differentiators and integrators. Figures 3(a), 

4(a), 5(a), 6(a) are the magnitude responses for the 

orders 1/3, -1/3, 1/4, -1/4 respectively. Figures 3(b), 

4(b), 5(b), 6(b) are the Phase responses for the orders 

1/3, -1/3, 1/4, -1/4. From the figures, it is clear that 

the fifth-order rational transfer function matches the 

ideal response. As the order of the rational transfer 

function increases, the response approaches the 

ideal. However, the number of terms has increased, 

the hardware complexity has increased, and the cost 

has increased. Therefore, the optimal order value 

was selected to compromise both system 

performance and hardware requirements.  

 

The magnitude responses show that when 

fractional order diminishes, the magnitude in dB 

lowers as well. The increase in dB is proportional to 

the fractional order of the differentiator. The half 

order, one-third, and one-fourth order differentiators 

have phases of 45, 30, and 22.50 degrees 

respectively, while the half order, one-third, and 

one-fourth order integrators have phases of -45, -30, 

and -22.50 degrees respectively. As a result, the 

phase angle of a fractional order differ-phase 

integrator's is defined as 

 

𝑃ℎ𝑎𝑠𝑒 (𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠) = ±𝛼 ∗ 90 … (8) 

 

In the above equation, + sign stands for 

differentiator and – sign for integrator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Rational Approximations for fractional 

order 𝛼 =
1

4
, −

1

4
 

 

Rational Approximations for 𝒔
𝟏

𝟒 using CFE method 
 

Number 

of 

terms 

Rational approximations 

2 𝐺2−1/4(𝑠) =
5𝑠 + 3

3𝑠 + 5
 

4 𝐺4−1/4(𝑠) =
15𝑠2 + 42𝑠 + 7

7𝑠2 + 42𝑠 + 15
 

6 𝐺6−1/4(𝑠) =
195𝑠3 + 1287𝑠2 + 1001𝑠 + 77

77𝑠3 + 1001𝑠2 + 1287𝑠 + 195
 

8 

𝐺8−1/4(𝑠)

=
663𝑠4 + 7956𝑠3 + 14586𝑠2 + 5236𝑠 + 231

231𝑠4 + 5236𝑠3 + 14586𝑠2 + 7956𝑠 + 663
 

10 

𝐺10−1/4(𝑠) =
663𝑠5+12597𝑠4+41990𝑠3+35530𝑠2+7315𝑠+209

209𝑠5+7315𝑠4+35530𝑠3+41990𝑠2+12597𝑠+663
  

Rational Approximations for 𝒔− 
𝟏

𝟒 using CFE method 
 

2 𝐻2−1/4(𝑠) =
3𝑠 + 5

5𝑠 + 3
 

4 𝐻4−1/4(𝑠) =
7𝑠2 + 42𝑠 + 15

15𝑠2 + 42𝑠 + 7
 

6 𝐻6−1/4(𝑠) =
77𝑠3 + 1001𝑠2 + 1287𝑠 + 195

195𝑠3 + 1287𝑠2 + 1001𝑠 + 77
 

8 

𝐻8−1/4(𝑠) =
231𝑠4+5236𝑠3+14586𝑠2+7956𝑠+663

663𝑠4+7956𝑠3+14586𝑠2+5236𝑠+231
  

10 

𝐻10−1/4(𝑠) =
209𝑠5+7315𝑠4+35530𝑠3+41990𝑠2+12597𝑠+663

663𝑠5+12597𝑠4+41990𝑠3+35530𝑠2+7315𝑠+209
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Figure 1(a) 

 

 
Figure 1(b) 

 

Figure 1: (a) Magnitude (b) Phase response of 

analog half fractional order differentiator 

 

 

 

 
Figure 2(a) 

 

 
Figure 2(b) 

 

Figure 2: (a) Magnitude (b) Phase response of 

analog half fractional order integrator 

 

 

 

 
Figure 3(a) 

 
Figure 3(b) 

 

Figure 3: (a) Magnitude (b) Phase response of 

analog one-third fractional order 

differentiator 
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Figure 4(a) 

 

 
Figure (b) 

 

Figure 4: (a) Magnitude (b) Phase response of 

analog one-third fractional order 

integrator 

 

 

 

 
Figure 5(a) 

 

 
Figure 5(b) 

 

Figure 5: (a) Magnitude (b) Phase response of 

analog one-fourth fractional order 

differentiator 

 

 

 

 
Figure 6(a) 

 
Figure 6(b) 

 

Figure 6: (a) Magnitude (b) Phase response of 

analog one-fourth fractional order 

integrator 
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4. Results and discussions 
 

The residue function of MATLAB is used to realize 

the third order rational approximation. It provides 

the partial expansion of the transfer function. The 

resistance and capacitance values are computed 

depending on the value of fractional orders 1/2, 1/3. 

For third-order approximation, the number of 

passive elements is 7, and the circuit appears as 

below in Figure 7 [12]. The values of the resistance 

and capacitance change depending upon the value of 

fractional order. Active realization of fractance 

device is shown in Fig.8. Fig.9 and 10 depict the 

results obtained for the application of sine and 

square wave signals (α = -0.5). There is a delay in 

the sine wave response. Fig.11 and 12 are the input 

and output signals for the fractional order, α = -1/3. 

The frequency under consideration is 100 mHz. To 

verify the efficacy of the proposed circuit, a bode 

plot is drawn as shown in Fig. 13 for α = -1/3 case. 

 

 

 
Figure 7:  Passive circuit of fractance device 

 

 

 

Figure 8: Realization of fractance device using 

operational amplifier 

 

 
Figure 9: Input and output waveforms for 100 

mHz sinewave (3rd order Approximation 

to α = -0.5) 

 
Figure 10: Input and output waveforms of square 

wave with Frequency 100 mhz (3rd 

order approximation to α = -0.5) 

 

 

 
Figure 11: Input and output waveforms of sine 

signal with a frequency of 100 mHz (α 

= -1/3) 

 

 

 
Figure 12: Input and output waveforms  

for α = -1/3 at 100 mhz 

 

 

 
Figure 13: Bode plot of α = -1/3 case 
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5.  Conclusions 
 

This work describes the realization of a fractance 

device of order 1/2, 1/3. The continued fraction 

expansion method is used to get the rational 

approximation. The order of the approximation is 

limited to third order due to the hardware 

complexity. The MATLAB residue function is used 

to create the third order approximation utilizing 

passive elements. Using an operational amplifier, 

active realization is achievable. The circuit 

simulations are carried out utilizing TINA software. 

The acquired results are closer to those predicted by 

theory. The frequency of the input signal is set to 

100 mHz. Both square wave and sine wave are used 

as inputs, and the responses are recorded. 
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