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Abstract: Using nonlocal continuum model we have obtained expressions for transverse deflection and buckling 

load for a simply supported single-walled carbon nanotube for different aspect ratios (L/d). We used Laplace 

transform method to calculate results. We found that these results are in good agreement with the exact 

analytical solution and the small scale coefficient has a noticeable effect on the buckling load of the carbon 

nanotube (CNT). This shows that Laplace transform method can be used in investigating different boundary 

problems on CNTs with nonlocal effects. 
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1. Introduction: 

 

The role of carbon nanotubes (CNTs) in modern technologies is becoming increasingly significant because of 

their outstanding mechanical [1,2], electrical [3] and thermal properties [4]. These superior properties of CNTs 

make them preferable candidates for a number of applications such as building different kinds of nanodevices in 

nanoelectromechanical, micro-electromechanical and many other systems. Before using CNTs for practical 

applications its mechanical properties should be known. For this many researchers have performed experiments 

but its mechanical properties have not yet fully understood. Since performing experiments at nanoscale are very 

expensive and also difficult to control, therefore, as an alternative, researchers perform various simulations such 

as molecular dynamics [5], molecular mechanics [6], density functional theory [7] to study their mechanical 

properties. Although the results of the simulation methods are in good agreement with the experimental results, 

these methods require considerable time and computational effort. It is found that the continuum models can 

give satisfactory results in describing mechanical properties of CNTs [5]. Further, the local continuum model is 

suitable for studying mechanical properties of CNTs at length scale greater than 100 nm [8]. However, its 

applicability at small length scale (less than 100 nm) is questionable [9] because they do not take into account 

the intrinsic size dependence of the CNTs. At small length scale the micro structure of the material, such as 

lattice spacing between individual atoms, becomes important and cannot be ignored. Hence, an appropriate 

continuum model is needed to properly investigate the effect of small scale coefficient in the mechanical 

properties of CNTs. This can be solved by using nonlocal continuum model proposed by Eringen [10].  

 

The nonlocal continuum model has been successfully used for bending, buckling and vibration of CNTs and 

other nanosized structures. Sudak [8] investigated the buckling behaviour of multi-walled CNTs by 

incorporating the van der Waals forces and the effects of small scale coefficient. This work concluded that the 

small scale coefficient contributes significantly into the critical axial strain of buckling and cannot be neglected. 

Wang et al. [11] derived the expressions for buckling load of CNTs using nonlocal continuum model and Euler–

Bernoulli beam theory. They showed that when small scale effect is considered the buckling load becomes 

smaller. 

 

In this work, we have used nonlocal continuum model and Euler-Bernoulli beam theory to investigate the small 

scale effect on the buckling behaviour of a simply supported single-walled carbon nanotube (SWCNT). We 

have derived an expression for transverse deflection of the CNT using Laplace transform method. We have also 

obtained an expression for buckling load and calculated its numerical values for CNTs having different aspect 

ratios (L/d) for various small scale coefficients (e0a) as shown in table 1. Further, we have plotted the first and 

second buckling deflection modes in figure 2. 
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2. Nonlocal continuum model for buckling analysis of a simply supported single-walled CNT: 

 

In nonlocal elastic theory, the stress at a reference point in the body depends on strains at all points of the body 

[10,11]. This is based on the atomic theory of lattice dynamics and some experimental observations on phonon 

dispersion. In this approach, the intrinsic size scale is included in the constitutive equations as a material 

parameter [11,12]. If the effects of strains at points other than the point considered are neglected, it reduces to 

the classical or local theory of elasticity. The constitutive equation of a linear, homogeneous, isotropic, nonlocal 

elastic solid with zero body force are given by [10,11] 

𝜎𝑖𝑗(𝒙) =  ∫
𝑉

𝛼(|𝒙 − 𝒙′|, 𝜏)𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙(𝒙′)𝑑𝑉(𝒙′);  ∀𝒙 ∈ 𝑉   (1) 

where 𝜎𝑖𝑗 and 𝜀𝑘𝑙 are stress and strain tensors respectively, 𝐶𝑖𝑗𝑘𝑙  is the elastic modulus tensor of classical 

isotropic elasticity, the scalar function 𝛼(|𝒙 − 𝒙′|, 𝜏) is the attenuation function, which serves to incorporate the 

nonlocal effects at the reference point x produced by local strain at the source x' into the constitutive equation, 

and 𝜏 = e0a/𝑙, where e0 is a constant appropriate to each material, a is an internal characteristic length (e.g., 

length of C-C bond, lattice parameter, granular distance), and 𝑙 is an external characteristic length (e.g., crack 

length, wavelength). The value of e0 needs to be determined from experiments or matching dispersion curves of 

plane waves with those of atomic lattice dynamics. The integral is over the entire volume 𝑉 occupied by the 

elastic body.  

 

The equivalent differential form of equation (1) is written in one-dimensional case as [11,12] 

[1 − (e0a)2 𝑑2

𝑑𝑥2] 𝜎(𝑥) = 𝐸𝜀(𝑥)      (2) 

where E is the Young's modulus of the CNT. We use nonlocal continuum model and Euler-Bernoulli beam 

theory to study buckling behaviour of a cylindrical simply supported SWCNT of length L and diameter d. The 

equilibrium equation for the bending moment (𝑀) on the one-dimensional structure subjected to an axial 

compression F is 
𝑑𝑀

𝑑𝑥
= F

𝑑𝑦

𝑑𝑥
          (3) 

where 𝑦 is the transverse deflection of the CNT. Differentiating the above equation with respect to 𝑥 we get 
𝑑2𝑀

𝑑𝑥2 = F
𝑑2𝑦

𝑑𝑥2       (4) 

For small bending, the bending moment (𝑀) and the axial strain (𝜀) of the CNT are given by [10] 

𝑀(𝑥) = ∫
𝐴

𝜎(𝑥)𝑧𝑑𝐴  and  𝜀(𝑥) = −𝑧
𝑑2𝑦

𝑑𝑥2     (5) 

Using equation (5) in equation (2) we get 

[1 − (e0a)2 𝑑2

𝑑𝑥2] 𝑀(𝑥) = −𝐸𝐼
𝑑2𝑦

𝑑𝑥2      (6) 

where 𝐸𝐼 is the bending rigidity of the CNT. The expression for 𝑀 is obtained by using equation (4) in equation 

(6) 

    𝑀(𝑥) = −[𝐸𝐼 − F(e0a)2]
𝑑2𝑦

𝑑𝑥2      (7) 

At any point 𝑥, 𝑀 is also given as [13] 

𝑀(𝑥) = F𝑦 − 𝑀(0) 

where 𝑀(0) is the bending moment at the supported end (𝑥 = 0). Using the above expression in equation (7) we 

have 

F𝑦 − 𝑀(0) = −[𝐸𝐼 − F(e0a)2]
𝑑2𝑦

𝑑𝑥2
 

or,                                                           
𝑑2𝑦

𝑑𝑥2 +
F𝑦

𝐸𝐼−F(e0a)2 =
𝑀(0)

𝐸𝐼−F(e0a)2  

or,         
𝑑2𝑦

𝑑𝑥2 + 𝜉2𝑦 = Κ        (8) 

where 

𝜉 = √
F

𝐸𝐼−F(e0a)2                 (9a) 

and    

 Κ =
𝑀(0)

𝐸𝐼−F(e0a)2                 9b) 

Now applying Laplace transform [14] to equation (8) we get 
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𝐿{
𝑑2𝑦

𝑑𝑥2
} + 𝜉2𝐿{𝑦} = Κ𝐿{1} 

or,     𝑠2𝐿{𝑦} − 𝑠𝑦(0) − 𝑦′(0) + 𝜉2𝐿{𝑦} =
Κ

𝑠
     (10) 

For a simply supported CNT the boundary conditions are 

𝑦(0) = 𝑀(0) = 0      (11a) 

    𝑦(L) = 𝑀(L) = 0      (11b) 

Using boundary condition (11a) in equations (9b) and (10) we obtain 

(𝑠2 + 𝜉2)𝐿{𝑦} = 𝑦′(0) 

or,               𝐿{𝑦} =
𝑦′(0)

(𝑠2+𝜉2)
=

Θ

𝜉

𝜉

(𝑠2+𝜉2)
      

where Θ = 𝑦′(0). Applying inverse Laplace transform to the above equation we get 

𝑦(𝑥) =
Θ

𝜉
sin𝜉𝑥 

or,            𝑦(𝑥) = Csin𝜉𝑥      (12) 

where C =
Θ

𝜉
. Equation (12) represents the transverse deflection of a CNT under buckling. Using boundary 

condition (11b) in equation (12) we get 

or,              Csin𝜉L = 0 

or,               sin𝜉L = 0     (since C ≠ 0) 

The above condition implies that 

𝜉L = 𝑛𝜋 

or,                  𝜉 =
𝑛𝜋

L
  for 𝑛 = 0, 1, 2, 3, …    (13) 

Squaring equation (13) on both sides and then using equation (9a), we obtain the buckling load for the CNT as 

                               F =
𝑛2𝜋2

L2 𝐸𝐼

1+(𝑒0a)2𝑛2𝜋2

L2

                  (14) 

This shows that the value of F increases with 𝐸𝐼 but decreases with L2 and (e0a)2. When e0a = 0 then equation 

(14) gives the same expression for the buckling load of a local simply supported CNT.  Now, substituting the 

expression of 𝜉 from equation (13) in equation (12) we get 

𝑦(𝑥) = Csin
𝑛𝜋𝑥

L
                 (15) 

Equation (15) represents the buckling deflection mode for a simply supported CNT. 

 

3. Results and discussion: 

 

We consider SWCNTs with different lengths (L = 10 ˗ 20 nm), each having the same diameter (d = 1 nm) and 

𝐸 = 1 TPa [15]. Using equation (14) we have calculated the numerical values of F for CNTs having 

different aspect ratios (L/d = 10, 12, 14, 16, 18, 20) for various small scale coefficients (e0a = 0.0, 0.5 1.0, 1.5, 

2.0 nm) at 𝑛 = 1 and 𝑛 = 2 as shown in table 1. 

 

Table 1: Buckling loads F (nN) for a simply supported SWCNT at  𝑛 = 1 and 𝑛 = 2. 

 e0a (nm) e0a (nm) 

 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 

L/d F (nN) (𝑛 = 1 ) F (nN) (𝑛 = 2) 

10 4.8447 4.7280 4.4095 3.9643 3.4734 19.3788 17.6380 13.8937 10.2627 7.5137 

12 3.3644 3.3077 3.1486 2.9149 2.6405 13.4575 12.5943 10.5619 8.3233 6.4186 

14 2.4718 2.4411 2.3533 2.2202 2.0574 9.8871 9.4131 8.2295 6.8037 5.4756 

16 1.8925 1.8744 1.8222 1.7414 1.6396 7.5698 7.2888 6.5584 5.6199 4.6818 

18 1.4953 1.4840 1.4511 1.3994 1.3329 5.9811 5.8043 5.3315 4.6942 4.0212 

20 1.2112 1.2037 1.1820 1.1475 1.1024 4.8447 4.7280 4.4095 3.9643 3.4734 
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The results are then compared with that of Ref. 16. We found that our results are in very good agreement with 

them for 𝑛 = 1. In figures 1(a) and 1(b) we have plotted aspect ratio (L/d) versus buckling load (F) at  𝑛 = 1 

and 𝑛 = 2 respectively. Using equation (15), we plot 𝑥/L versus 𝑦/C for a CNT with L = 14 nm at 𝑛 = 1 and 

𝑛 = 2, which is shown in figure 2. From figure 1 we observe the followings:  

 

 * For a given aspect ratio the value of F decreases as the small scale coefficient increases for both the first 

(𝑛 = 1) and second (𝑛 = 2) modes of buckling. This shows the significant effect of small scale coefficient on 

the buckling behaviour of CNT. 

 

*  For a given value of small scale coefficient the value of buckling load decreases with increasing the value of 

aspect ratio and it is more for the case of 𝑛 = 2 than that of 𝑛 = 1. This shows that small scale effect is more 

noticeable for CNTs with shorter lengths. This is because the nonlocal effect is definitely large within short 

distance in substances.  

 

 
Figure 1: Aspect ratio (L/d) versus load (F) at (a) 𝑛 = 1 and (b) 𝑛 = 2. 

 

From figure 2 it can be seen that for the first buckling mode there is one antinode, located at the mid-point of the 

CNT whereas for the second buckling mode there are two asymmetric antinodes, located at one-fourth and 

three-fourth of the total length of the CNT. 
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Figure 2: The first and second buckling modes of a CNT with L = 14 nm. 

 

4. Conclusion:  

 

We have derived the expressions for transverse deflection and buckling load for a simply supported single-

walled CNT using nonlocal continuum model. Using Laplace transform method we have obtained the transverse 

deflection of the CNT. The results obtained from Laplace transform gives exactly the same value as that of 

analytical method. Moreover the Laplace transform method is simpler than that of the analytical method. We 

found that the small scale effect is more noticeable for CNT with shorter length for the case of simply supported 

single-walled CNT. Further, the small scale effect on the buckling load is more with the higher mode. Our 

results will be helpful in investigating more complicated boundary problems on CNTs with nonlocal effects. 
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