Fabrication and electrical characterization of Organic Field-Effect Transistor based on CSA doped PANi-Ta2O5 nanocomposite

BORNALI BORA PATOWARY, Shakuntala Laskar, P.P Sahu, Rewrewa Narzary

Abstract


Top-contact, bottom-gate organic field-effect transistors (OFETs) based on Polyaniline (PANi)-Tantalum Pentoxide (Ta2O5) nanocomposite doped with Camphor Sulphonic Acid (CSA) as the active semiconductor layer and Poly Methyl Methacrylate (PMMA) as the gate dielectric were investigated. Gold was thermally evaporated for the top source and drain contacts of 80-90 nm thickness with a conducting channel of 1 mm length and 1cm width. A relatively good charge carrier mobility of  0.12 cm2/V-s was achieved. This may be ascribed to the highly crystalline nature of the nanocomposite, the diminished contact resistance due to the long channel and the symbiosis developed between the organic semiconductor and the polymer dielectric. The smaller source-to-drain current and high saturation drain voltage may be accounted for the long channel effect. The device exhibited a threshold voltage of   -12.89 V, a moderate current on/off ratio of ~103 and a subthreshold swing of 9.3 V/dec. The agglomerated globular morphology of the PANi nanocomposite and the high carrier mobility can immensely contribute towards using the OFET device for room-temperature based application, particularly in the gas sensing field.


Full Text:

PDF

References


J. Zhao, G. Wu, Y. Liu, X. Tao, W. Chen, “A wearable and highly sensitive CO sensor with a macroscopic polyaniline nanofibre membrane”, Journal of Materials Chemistry A, Issue 48, 2015.

C. Kotlowski, P. Aspermair, H. U. Khan, C. Reiner-Rozman, J. Breu, S. Szunerits, J. Kim, Z. Bao, C. Kleber, P. Pelosi, W. Knoll, “Electronic biosensing with flexible organic transistor devices”, Flexible and Printed electronics, 3(2018) 034003.

K.H. Lee, J. Choi, S. Im, “Low-voltage-driven pentacene thin-film transistor with an organic-inorganic nanohybrid dielectric”, Applied Physics Letter, 91, 123502, 2007.

X. Wu, J. Huang, “Array of Organic Field-Effect Transistor for Advanced Sensing”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol 7, Iss 1, March 2017.

M. Irimia-Vladu, E.D. Glowacki, N.S. Sariciftci, S. Bauer,” Green Materials for Electronics”, John Wiley & Sons, Technology and Engineering, Sept, 2017

O. Knopfmacher , ML Hammock, AL Appleton , G. Schwartz, J. Mei, T. Lei, J. Pei, Z. Bao,” Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment”, Nat Commun 5, 2954, (2014).

H. Klauk, M. Halik, U. Zschieschang, F. Eder, G. Schmid, C. Dehm, “ Pentacene organic transistor and ring oscillators on glass and on flexible polymeric substrates”, Applied Physics Letter, 82, 4175, (2003).

Y.Y. Lin, D.J. Gundlach, S.F., Neson, T.N. Jackson, “ Stacked pentacene layer organic thin-film transistors with improved characteristics”, IEEE Electron Device Letters, 18(12), 606-608, (1997).

S.L. Patil, M.A. Chougule, S.G. Pawar, S. Sen, V.B. Patil, “Development of Polyaniline–ZnO nanocomposite gas sensor”, Sensors and Transducers Journal, 34 (2011) 120–131.

S.H. Mir, L. A. Nagahara, T. Thunder, P. Mokarian-Tabari, H. Furukawa, A. Khosla, “Review—Organic-Inorganic Hybrid Functional Materials: An Integrated Platform for Applied Technologies”, Journal of The Electrochemical Society, 2018, Vol. 165, Iss 8.

S. Huh, H.H. Choi, K. Cho, S.B. Kim, “Photopatternable Conducting Polymer nanocomposite with incorporated gold nanoparticles for use in organic field effect transistors”, Bull. Korean Chem. Soc. 2012, Vol. 33, No. 4.

S. Huh, B. Chae, S.B. Kim, “Two strategies for the self-assembly of gold nanoparticles: Photoreaction and radical reaction”, Journal of Colloid and Interface Science.

X. Guo, Y. Kang, T. Yang, S. Wang, “Low temperature NO2 sensors based on polythiophene/WO3 organic-inorganic hybrids”, Transactions of Nonferrous Metals Society of China, Vol. 22, 2012

S.T. Navale, A.T. Mane, M.A. Chougule, R.D. Sakhare, S.R. Nalage, V.B. Patil,” Highly selective and sensitive room temarature NO2 gas sensor based on polypyrrole thin films”, Synthetic Metals, 2014

M L Rozemarie, B. Andrei, H. Liliana, R. Cramariac, O. Cramariuc “Electrospun Based Polyaniline Sensors – A Review”, IOP Conf., Material Science and Engineering, 2017.

S.G. Pawar, S.L. Patil, R. Godase, R. N. Mulik, Shashwati Sen, and V. B. Patil, “New Method for Fabrication of CSA Doped PANi-TiO2 Thin-Film Ammonia Sensor”, IEEE Sensors Journal, Vol. 11, No. 11, November 2011.

B.T. Raut, M.A. Chougule, S.R. Nalage, D.S. Dalavi, Sawanta Mali, P.S. Patil, V.B. Patil, “CSA doped polyaniline/CdS organic–inorganic nanohybrid: Physical and gas sensing properties”, Ceramics International.

S. H. Nimkar, S. B. Kondawar, P. S. More, “Polyaniline/TiO2 thin film based Carbon Dioxide gas sensor”, International Journal of researches in Biosciences, Agriculture and Technology, 2015.

R.K. Sonker, B.C. Yadav, A. Sharma, M. Tomar, V. Gupta, “Experimetal investigations on NO2 sensing of pure ZnO and PANI-ZnO composite thin films”, RSC Advances, 2016.

J. Lu, K. Moon and C. P. Wong, "High-k Polymer Nanocomposites as Gate Dielectrics for Organic Electronics Applications," 2007 Proceedings 57th Electronic Components and Technology Conference, Reno, NV, 2007, pp. 453-457.

C. G. Alvarado-Beltrán, J. L. Almaral-Sánchez, I. Mejia, M. A. Quevedo-López, R. Ramirez-Bon, “Sol–Gel PMMA–ZrO2 Hybrid Layers as Gate Dielectric for Low-Temperature ZnO-Based Thin-Film Transistors”, ACS Omega 2017 2 (10), 6968-6974.

R. R. Navan, K. Prashanthi, M.S. Baghini, V.R. Rao, “ Solution processed photopatternable high-k nanocomposite gate dielectric for low voltage organic field effect transistors”, Microelectronic Engineering, vol 96, Aug. 2012.

Houin, G. J. R., Duez, F., Garcia, L., Cantatore, E., Torricelli, F., Hirsch, L. Abbas, M, “ High performance low voltage organic field effect transistors on plastic substrate for amplifier circuits”, Organic Field-Effect Transistors XV, 28 August 2016, San Diego, California (pp. 1-6). [99430H] (Proceedings of SPIE; Vol. 9943).

W. Shi, Y. Zheng, J. Yu, “Polymer dielectric in organic field effect transistor”, Properties and applications of polymer dielectric, May, 2017, DOI: 10.5772/65916.

Puigdollers J, Voz C, Martin I, Orpella A, Vetter M, Alcubilla R, “Pentacene thin-film transistors on polymeric gate dielectric: Device fabrication and electrical characterization”, Journal of Non-Crystalline Solids 338(1): 617-621, May 2004.

K. Amer, S. Ebrahim, M. Fateha, A.M. Elshaer,”Organic field effect transistor based on polyaniline - dodecylbenzene sulphonic acid for humidity sensor”, 34th NRSC, Feb. 2017.

C. Jung-Kubiak, A. Malaikal, A. Sidorenko, T. Siegrist, “Pentacene-based thin film transistors with titanium oxide-polystyrene/polystyrene insulator blends: High mobility on high K dielectric films”, Applied Physics Letter, 90(6):062111-062111-2, Feb. 2007.

C. Wang, C. Hsieh, “Flexible organic thin-film transistors with silk fibroin as the gate dielectric”, Apr. 2011, Advanced Materials 23(14) 1630-4.

J.C. Perkinson, “Organic Field Effect Transistors”, OFET term paper, web.mit.edu, Nov. 2007.

B.B. Patowary, S. Laskar, R. Narzary and A. Mondal, "Synthesis, Characterization and Study of NO2 gas sensing behavior of CSA doped PANi-Ta2O5 nanocomposite", IEEE Sensors Journal, Dec. 2019, DOI: 10.1109/JSEN.2019.2959435.

Henry D. Tran, J.M. D’Arcy, Yue Wang, P.J. Beltramo, V. Strong and R.B. Kaner, “The Oxidation of aniline to produce “polyaniline” : a process yielding many different nanoscale structures”, Mater. Chem., 2011, 21,3534– 3550 DOI: 10.1039/C0JM02699A.

Y. R. Su, W. G. Xie, Y. Li, Y. Shi, N. Zhao, J.B. Xu, “A low-temperature, solution-processed high-k dielectric for low-voltage, high performance organic field-effect transistors (OFETs)”, J. Phys. D: Appl Phys. 46(2013) 095105 (8pp).

T. Nagase, T. Hirose, T. Kobayashi R. Ueda, A. Otomo, H. Naito, “ Influence of Substrate Modification with Dipole Monolayers on the Electrical Characteristics of Short-Channel Polymer Field-Effect Transistors”, Applied Sciences, Aug. 2018.

X. Wang, X. Zhang, L. Sun, K.K. Gleason, “High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment”, Science Advances 4(9):eaat5780, Aug. 2018.

S. Y. son, Y. Kim, J. Lee, G. Lee, “High-field-effect mobility of low-crystallinity conjugated polymers with localized aggregates”, Journal of the American Chemical Society, 2016, 138(26), 8096-8103.

R. Li, Y. Zhou, M. Sun, Z. Gong, “Article influence of charge carriers concentration and mobility on the gas sensing behavior of tin dioxide thin films”, Coatings 2019, 9(9), 591.

V. P. Liyana, Stephania A M, K Shiju, P Predeep, “Influence of gate dielectrics, electrodes and channel width on OFET characteristics”, Journal of Physics: Conference Series 619 (2015) 012029.

M. Yi, J. Guo, W. Li, L. Xie, Q. Fan, W. Huang, “High-mobility flexible pentacene-based organic field-effect transistors with PMMA/PVP double gate insulator layers and the investigation on their mechanical flexibility and thermal stability”, RSC advances 5(115), Nov. 2015.

P. J. Diemer, Z. A. Lamport, Y. Mei, J. W. Ward, “Quantative analysis of the density of trap states at the semiconductot-dielectric interface in organic field-effect transistors”, Appl. Phys. Lett. 107, 103303 (2015).


Refbacks

  • There are currently no refbacks.


------------------------------------------------------------------------------------------------------------------------

The “ADBU Journal of Engineering Technology (AJET)" ISSN:2348-7305

This journal is published under the terms of the Creative Commons Attribution (CC-BY) (http://creativecommons.org/licenses/)

Number of Visitors to this Journal:web counter