Photocatalytic Degradation of Methyl Orange using MoS2 nanoparticles as catalyst

Debabrat Kalita, Lakhi Chetia, Gazi A. Ahmed


MoS2 is a semiconductor transition metal dichalcogenide material (TMD) which has exciting optoelectronic properties. Due to its band gap (BG) energy lying in the visible range it shows good photocatalytic behavior. In this report, we have synthesized MoS2 nanoparticles (NPs) and its morphology is characterized using XRD and SEM. EDX is performed to analyze the composition of the as-synthesized material. Multiple BG energy in the visible light range is observed from the analysis of UV-Visible spectroscopy. We have investigated the photocatalytic property by the degradation of Methyl Orange (MO) using MoS2 nanoparticles as catalyst. It is observed that the as-synthesized MoS2 NPs degrade MO very efficiently with 98% degradation using 1mg in 1ml 10μM dye solution in 2hr.

Full Text:



K. F Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Physical Review Letters, 105(13), pp. 136805, 2010.

(doi: 10.1103/PhysRevLett.105.136805)

Q. Tang, Z. Zhou, “Graphene-analogous low-dimensional materials,” Progress in Materials Science, 58, pp.1244-1315, 2013.(doi:10.1016/j.pmatsci.2013.04.003)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis,“Single-layer MoS2 Transistors,” Nature Nanotechnology, 6, pp.147-150,2011. (doi:10.1038/NNANO.2010.279)

K. Chang, W. Chen, “L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries,” ACS Nano, 5 (6), pp. 4720-4728, 2011.

(doi: 10.1021/nn200659w)

M. Shanmugam, T. Bansal, C. A. Durcan, B. Yu, “MoS2/ Ti02 Nanoparticle Composite Bulk Heterojunction Solar Cell,” In Proceedings of12th IEEE International Conference on Nanotechnology (IEEE-NANO), 2012.

Z. Carmen, S. Daniela (2012). Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview, Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update, Dr. Tomasz Puzyn (Ed.), ISBN: 978-953-307-917-2, InTech, Available from:[Accessed: Aug. 05, 2016].(General Internet site)

J. Kaur, S. Bansal, S.Singhal, “Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method,” Physica B, 416, pp. 33–38, 2013. (

T. Chen, Y. Zheng, J. M. Lin, G. Chena, “Study on the Photocatalytic Degradation of Methyl Orange in Water Using Ag/ZnO as Catalyst by Liquid Chromatography Electrospray Ionization Ion-Trap Mass Spectrometry,” Journal of American Society for Mass Spectrometry, 19, pp. 997–1003, 2008. (doi:10.1016/j.jasms.2008.03.008)

J. H. Appel, D. O. Li, J. D. Podlevsky, A. Debnath, A. A. Green, Q. H. Wang, and J. Chae, “Low Cytotoxicity and Genotoxicity of Two-Dimensional MoS2 and WS2,” ACS Biomaterials Science & Engineering, 2, pp. 361−367, 2016. (doi: 10.1021/acsbiomaterials.5b00467) ([Accessed: April. 04, 2018].(General Internet site))

Q. Xiang, J. Yu, M. Jaroniec, “Synergetic Effect of MoS2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles,” Journal of American Chemical Society,134,pp. 6575−6578, 2012. (doi:10.1021/ja302846n).

X.Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen, L. Wang, C. Li, “Photocatalytic H2 Evolution on MoS2/CdS Catalysts under Visible Light Irradiation,” Journal of Physical Chemical C, 114, pp. 1963–1968, 2010. (doi: 10.1021/jp904350e)

C. N. R. Rao, A. Nag, “Inorganic Analogues of Graphene,”European Journal of Inorganic Chemistry, 2010 (27), pp. 4244-4250, 2010. (doi: 10.1002/ejic.201000408)

H. S. S. R Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, C. N. R. Rao, “MoS2 and WS2 Analogues of Graphene,” Angewandte Chemie, 122 (24), pp. 4153-4156, 2010. (doi:10.1002/ange.201000009)

P. Chetri, P. Basyach, A. Choudhury, “Structural, optical and photocatalytic properties of TiO2/SnO2 and SnO2/TiO2 core-shell nanocomposites: An experimental and DFT investigation,” Chemical Physics, 434, pp. 1-10, 2014. (doi:10.1016/j.chemphys.2014.02.007)

A. E. Morales, E. S. Mora, and U. Pal, “Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures,” REVISTA MEXICANA DE F´ISICA S 53 (5), pp. 18–22, 2007.

S. Paul, A. Choudhury,“Investigation of the optical property and photocatalytic activity of mixed phase nanocrystalline titania,” Applied Nanoscience, 4, pp. 839-847, 2014. (doi:10.1007/s13204-013-0264-3)

L. Chetia, D. Kalita and G. A. Ahmed, “Enhanced photocatalytic degradation by diatom templated mixed phase titania nanostructure,” Journal of Photochemistry and Photobiology A: Chemistry, 338, pp. 134–145, 2017. (doi:10.1016/j.jphotochem.2017.01.035)

W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone , R. M. Osgood, Jr., “Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy,” Physical Review Letter,111,pp.10680,2013.

(doi: 10.1103/PhysRevLett.111.106801)


  • There are currently no refbacks.


The “ADBU Journal of Engineering Technology (AJET)" ISSN:2348-7305

This journal is published under the terms of the Creative Commons Attribution (CC-BY) (

Number of Visitors to this Journal:web counter