Automatic RADAR Target Recognition System at THz Frequency Band. A Review

Kaustubh Bhattacharyya, Rima Deka, Sunandan Baruah

Abstract


The development of technology for communication in the THz frequency band has seen rapid progress recently. Due to the wider bandwidth a THz frequency RADAR provides the possibility of higher precision imaging compared to conventional RADARs. A high resolution RADAR operating at THz frequency can be used for automatically detecting and segmenting concealed objects. Recent advancements in THz circuit integration have opened up a wide range of possibilities for on chip applications, like of security and surveillance. The development of various sources and detectors for generation and detection of THz frequency has been driven by other techniques such as spectroscopy, imaging and impulse ranging. One of the central vision of this type of security system aims at ambient intelligence: the computation and communication carried out intelligently. The need for higher mobility with limited size and power consumption has led to development of nanotechnology based THz generators. In addition to this some of the soft computing tools are used for detection of radar target automatically based on some algorithms named as ANN, RNN, Neuro-Fuzzy and Genetic algorithms. This review article includes UWB radar for THz signal, its characteristics and application, Nanotechnology for THz generation and issues related to ATR.

Full Text:

PDF

References


F. Qiang, Y. Wenxian, Automatic target recognition based on incoherent radar returns, Proceedings of the IEEE Aerospace and Electronics Conference, NAECON 1995 1 (May 1995) 123-128.

D. E. Dudgeon, R. T. Lacoss, An overview of automatic target recognition, The Lincoln Laboratory Journal 6 (1) (1993) 3-10.

S. Haykin, Neural Networks, Pearson Education, New Delhi, 2003.

C. H. Wilcox, The synthesis problem for radar ambiguity functions, Math Res. Center, U.S. Army, Univ. Wisconsin, Madison, WI, MRC Tech. Summary Rep. 157, April 1960; reprinted in R. E. Blahut, W. M. Miller, and C. H. Wilcox, Radar and Sonar, Part 1, New York, Springer-Verlang (1991).

H. Naparst, Dense target signal processing, IEEE Transactions on Information Theory 37 (2) (March 1991) 317-327.

M. R. Bell, Information theory and radar waveform design, IEEE Transactions on Information Theory 39 (5) (September 1993) 1578-1597.

S. U. Pillai, H. S. Oh, D. C. Youla, J. R. Guerci, Optimum transmit-receiver design in the presence of signal-

dependent interference and channel noise, IEEE Transactions on Information Theory 46 (2) (March 2000) 577-584.

S. Kay, Optimal signal design for detection of point targets in stationary gaussian clutter/reverberation, IEEE Journal on Selected Topics in Signal Processing 1 (1) (June 2007) 31-41.

K. Bhattacharyya, K. K. Sarma, E cient signal processing for design of ANN based automatic target recognition (ATR) system, proceeding of 57th Annual Technical session and Journal of Assam science Society (February, 2012) .

Goyette, T. M., A. Gatesman, T. M. Horgan, THz compact range radar systems, Pennsylvania (June 13, 2003).

K. B. Cooper, R. J. Dengler, NuriaLlombart, B. Thomas, G. Chattopadhyay, P. H. Siegel, THz imaging radar for stando personnel screening, IEEE Transaction on Terahertz Science and Technology 1 (1) (September 2011).

Y. Wu, ZhengwuXu, J. Li, Terahertz radar signal for heart and breath rate detection based on time-frequency analysis, Communications, Signal Processing and Systems, Lecture Notes in Electrical Engineering 202, Springer science business Media New York (2012) doi:10.1007/978.1.4614.5803.653.

J. M. Jornet, I. F. Akyildiz, Graphene-based plasmonic nano-transceiver for terahertz band communication, 8th European Conference on Antennas and Propagation (Eu-CAP) (April 2014) 492-496.

M. J. Fitch, R. Osiander, Terahertz waves for communications and sensing, JOHNS HOPKINS APL TECHNICAL DIGEST 25 (4).

M. Tonouchi, Cutting-edge terahertz technology, Nature Photonics 1 (2007) 97-105.

M. I. Skolnik, Opportunities in radar, Electronic, Communication and Engineering Journal (ECEJ), IEEE (December 2002) 263-272.

Radar basics, www.radartutorial.eu.

E. M. Staderini, Everything you always wanted to know about UWB radar: a practical introduction to the ultra wideband technology, downloaded from http://67.225.133.110/ gbpprorg/mil/radar/osee.pdf on 05-06-2015.

Nathanson, F. A, Radar Design Principles: Signal Processing and the Environment, McGraw-Hill, 1969.

M. I. Skolnik, Introduction to radar systems, 3rd ed. Mc Graw Hill, 2001.

F. Gini, A. Farina, M. Greco, Selected list of references on radar signal processing, IEEE transaction on Aerospace and Electronic Systems AES-37 (January 2001) 329-359.

Coleman, P. D., R. C. Becker, Present state of the millimeter wave generation and technique, IEEE Transactions on Microwave Theory and Techniques 7 (January 1959) 42-61.

Appleby, R., R. N. Anderton, Millimeter-wave and submilimeter-wave imaging for security surveillance, Proceedings of the IEEE 95 (2) (August. 2007) 1683-1690.

Oka, S. H. Togo, N. Kukutsu, T. Nagatsuma, Latest trends in millimeter-wave imaging technology, Progress In Electromagnetic Research Letters 1 (2008) 197-204.

Kemp, M. C., A. Glauser, C. Baker, Recent developments in people screening using terahertz technology| seeing the world through terahertz eyes, Proc. SPIE 6212 (2006) 27-34.

Appleby, R., H. B. Wallace, Stando detection of weapons and contraband in the 100 GHz to 1 THz region, IEEE Trans. on Ant. and Prop. 55 (11) (November 2007) 2944-2956.

Federici, J. F. B. Schulkin, F. Huang, G. Dale, R. Barat, F. Oliveira, D. Zimdars, THz imaging and sensing for security applications | explosives, weapons and drugs, Semiconductor Sci. Tecnol. 20 (7) (Jully 2005) S266-S280.

Sheen, D. McMakin, T. E. Hall, Three-dimensional millimeter-wave imaging for concealed weapon detection, IEEE Trans. MTT 49 (9) (2001) 1581-1592.

S. W. Harmer, S. E. Cole, N. J. Bowring, N. D. Rezgui, D. Andrews, On body concealed weapon detection using a phased antenna array, Progress In Electromagnetics Research 124 (2012) 187-210.

Siegel, P. H, Terahertz technology, IEEE Transactions on Microwave Theory and Techniques 50 (March 2002) 910-928.

Q.Wu, X.-C.Zhang, Free-space electro-optic sampling of terahertz beams, Applied Physics Letters 67 (1995) 3523-3525.

W. JC, History of millimeter and submillimeter waves, IEEE Trans Microwave Theory Tech (MTT) 32 (1984) 1118-1127.

M. Williams, Terahertz tech gets a major push at rice, Posted In Current News, Fea-tured Stories, Rice University News and Media (June 24, 2014) .

J. Jomet, I. Akyildiz, Channel capacity of electromagnetic nanonetworks in the tera-

hertz band, Proc. Of International Conference on Communications, ICC, Cape Town, South Africa (May, 2010).

J. M. Jornet, I. F. Akyildiz, Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks, IEEE TRANSACTIONS ON COMMUNICA-TIONS 62 (5) (MAY 2014) 1742{1754.

I. F. Akyildiz, J. M. Jornet, C. Hana, Terahertz band: Next frontier for wireless communications, Physical Communication 12 (2014) 1632.

B. Zhu, Y. Chen, K. Deng, W. Hu, Z. S. Yao, Terahertz science and technology and applications, PIERS Proceedings, Beijing, China (March 23-27, 2009) .

A. B. Shah, Terahertz data processing for stando detection of improvised explosive devices, Masters Theses, Curtis Laws Wilson Library, Missouri University of Science and Technology (2007).

B. Fischer, M. Homan, H. Helm, G. Modjesch, P. U. Jepsen, Chemical recognition in terahertz time-domain spectroscopy and imaging, Semicond.Sci.Technol. 20 (2005) S246-S253.

X. Shen, C. R. Dietlein, E. Grossman, Z. Popovic, F. G. Meyer, Detection and segmen-tation of concealed objects in terahertz images, IEEE Transaction on image Processing, 17 (12) (December 2008) 2465-2476.

M. J. Rosker, H. B. Wallace, Imaging through the atmosphere at terahertz frequencies, IEEE MTT-S International Symposium (June 2007).

C. M. Armstrong, The truth about terahertz, IEEE Spectrum (17 August 2012).

R. W. McMillan, Terahertz imaging, millimeter-wave RADAR, U.S. Army Space and Missile Defence Command, Huntsville, Alabama, USA.

H.-J. Song, T. Nagatsuma, Present and future of terahertz communications, IEEE Transactions on Terahertz Science and Technology 1 (1) (September 2011).

M. C. Kemp, Explosives detection by terahertz spectroscopya bridge too far?, IEEE Transactions on Terahertz Science and Technology 1 (1) (September 2011).

Z. D. T. et al, Thz medical imaging: In vivo hydration sensing, IEEE Transactions on Terahertz Science and Technology Special Inaugural Issue 1 (1) (September 2011).

J. Norbury, C. Gibbins, D. Matheson, A study in to the theoretical appraisal of the highest usable frequencies, Radio communicationsAgency Contract Reference AY 4329 (May 2003) .

A. G. Davis, E. H. Lin led, M. B. Jonston, The development of terahertz sources and their applications, Physics in Medicine and Biology 47 (October 2002) 3679-3689.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Lin eld, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, Generation and detection of ultrabroadband tera-hertz radiation using photoconductive emitters and receivers, Applied Physics Letters, 85 (2) (July 2004) 164-166.

T. Tanabe, K. Suto, J. ichi Nishizawa, T. Sasaki, Characteristics of terahertz-wave generation from GaSe crystals, Journal of Physics D: Applied Physics 37.

M. K. Saito, Y. Nagai, K. Yamamoto, K. Maeda, T. Tanabe, Y. Oyama, Terahertz wave generation via nonlinear parametric process from GaSe single crystals grown by liquid phase solution method, Optics and Photonics Journal, 4 (2014) 213-218.

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Muller, K. Unterrainer, Terahertz emission from GaAs and InAs in a magnetic eld, Phys. Rev. B 64, 085202.

F. Wang, D. Cheever, M. Farkhondeh, W. Franklin, E. Ihlo, J. van der Laan, B.McAllister, R. Milner, C. Tschalaer, D. Wang, D. F. Wang, A. Zolfaghari, T. Zwart, G. Carr, B. Podobedov, F. Sannibale, Coherent thz synchrotron radiation from a stor-age ring with high frequency rf system, Phys. Rev. Lett., 96 (2006) 064801.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, G. P. Williams, High-power terahertz radiation from relativistic electrons, Nature 420 (2002) 153-156.

R. J. Bell, Introductory fourier transform spectroscopy, Academic, New York (1972).

K. M. Evenson, D. A. Jennings, K. R. Leopold, L. R., Zink in laser spectroscopy VII., Seventh International Conference on Laser Spectroscopy (T. W. H. andY. R. Shen, ed.), Springer, Berlin (1985).

Q. H. B. Xu, M. R. Melloch, Electrically pumped tunable terahertz emitter based on intersubband transition, Appl. Phys. Lett. 71 (1997) 440-442.

D. Turchinovich, Study of ultrafast polarization and carrier dynamics in semiconductor nanostructures: A THz spectroscopy approach, PhD thesis, University of Freiburg (2004).

D. H. Auston, Subpicosecond electro optic shock waves, Appl. Phys. Lett. 43 (1983) 713-715.

A. G. Davis, E. H. Lin led, M. I. M. B. Jonston, The development of terahertz sources and their applications, Physics in Medicine and Biology 47 3679-3689.

M. R. Boersma, An introduction to terahertz electromagnetic waves generation, detection, properties and applications, downloaded from https://www.calvin.edu/.../boersma-tera%201st%20rough%20draft.doc.

L. Carr, M. Martin, W. McKinney, G. Neil, K. Jordan, G. Williams, High power terahertz radiation from relativistic electrons, Nature (2002) 420-153.

T. Tanabe, K. Suto, J. Nishizawa, T. Sasaki, Characteristics of terahertz-wave gener-ation from GaSe crystals, Journal of Physics D: Applied Physics 37 155-158.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, T. Kimura, Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP, Jurnal of Physics D: Ap-plied Physics 953-957.

T. K.-O. &. TadaoNagatsuma, A review on terahertz communications research, Journal of Infrared MilliTerahz Waves 32 (2011) 143171. doi:10.1007/s10762-010-9758-1.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, L. F. Lester, A dual-mode quantum dot laser operating in the excited state, Appl. Phys. Lett. 99 (23) (December 2011) 231110-1231110-3

A. Hurtado, I. D. Henning, M. J. Adams, L. F. Lester, Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser, IEEE Photonics Journal 5 (4) (August 2013) .

I. N. D. Anupam Tiwari, Member (L-209735), Military nanotechnology, International Journal of Engineering Science and Advanced Technology, ISSN: 22503676 2 (4) (July-August 2012) 825 830.

H. R. S. Seyyed Hossein Asadpour, Zahra Golsanamlou, Infrared and terahertz sig-nal detection in a quantum dot nanostructure, Elsevier, Physica E: Low-dimensional Systems and Nanostructures 54 (4552) (December 2013).

S. Choi, E cient antennas for terahertz and optical frequencies, PhD Dissertation, Electrical Engineering, University of Michigan (2014).

J. Jomet, I. Akyildiz, Graphene-based nano-antennas for electromagnetic nanonetworks inthe terahertz band, in Proc. Of 4th European Conference on Antenna and ropagation, Barcelona, Spain (April 2010) .

P. L. McEuen, M. S. Fuhrer, H. K. Park, Single-walled carbon nanotube electronics, IEEE Transactions on Nanotechnology 1 (March 2002) 78-85.

S. D. Li, Z. Yu, C. Rutherglen, P. J. Burke, Electrical properties of 0.4 cm long single-walled carbon nanotubes, Nano Letters 4 (October 2004) 2003-2007.

R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical properties of carbon nanotubes, World Scienti c 4 (1998).

C. Rutherglen, P. Burke, Nanoelectromagnetics: Circuit and electromagnetic proper-ties of carbon nanotubes, Small 5 (April 2009) 884-906.

B. Q. Wei, R. Vajtai, P. M. Ajayan, Reliability and current carrying capacity of carbon nanotubes, Applied Physics Letters 79 (August 2001) 1172-1174.

S. Choi, K. Sarabandi, Design of e cient terahertz antenna: Carbon nanotube vesus gold, 2010 IEEE Int. Symp. On Antennas and Propag. And USNC/URSI Nat. Radio Science Meeting, Toronto, ON, Canada (July 2010).

S. Salahuddin, M. Lundstrom, S. Datta, Transport e ects on signal propagation in quantum wires, IEEE Transactions on Electron Devices 52 (August 2005) 1734-1742.

J. J. Plombon, K. P. O'Brien, F. Gstrein, V. M. Dubin, Y. Jiao, High-frequency electrical properties of individual and bundled carbon nanotubes, Applied Physics Letters 90 (February 2007) .

C. Rutherglen, D. Jain, P. Burke, Rf resistance and inductance of massively parallel single walled carbon nanotubes: Direct, broadband measurements and near perfect 50 omega impedance matching, Applied Physics Letters 93 (August 2008).

G. W. Hanson, Fundamental transmitting properties of carbon nanotube antennas, IEEE Transactions on Antennas and Propagation 53 (November 2005) 3426-3435.

S. Choi, K. Sarabandi, Performance assessment of bundled carbon nanotube for an-765 tenna applications at terahertz frequencies and higher, IEEE Transactions Antennas Propagation 59 (3) (March 2011) 802-809.

P. J. Burke, An RF circuit model for carbon nanotubes, IEEE Transaction on Nan-otechnology 2 (1) (March 2003).

I. F. Akyildiz, J. M. Jornet, Nanoscale broadband terahertz communication, Spie, 770 Newsroom, 10.1117/2.1201402.005341 (2014).

J. M. Jornet, I. F. Akyildiz, Graphene-based plasmonic nano-transceiver for terahertz band communication, Proc. Eur. Conf. Antenn. Prop. (EuCAP) (2014).

I. F. Akyildiz, J. M. Jornet, Graphene-based plasmonic nano-transceiver for wireless communication in the terahertz band, US Provisional Patent (2013. Filed on 6 December) .

J. M. Jornet, I. F. Akyildiz, Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks, IEEE Jornal on Selected research in Commu-nications/Suppliment Part 2 31 (12) (December 2013) 685-694.

M. Reid, I. V. Cravetchi, R. Fedosejevs, I. M. Tiginyanu, L. Sirbu, Enhanced terahertz emission from porous InP (111) membranes, Applied Physics Letters 86 (2005) 021904.

H. Ahn, Y. Ku, Y. Wang, C. Chuang, S. Gwo, C. Pan, Terahertz emission from vertically aligned InN nanorod arrays, Applied Physics Letters 91 (2007) 132108.

S. He, X. Chen, X. Wu, G. Wang, F. Zhao, Enhanced terahertz emission from ZnSe nano-grain surface, Journal of Lightwave Technology, IEEE 26 (11) (2008) 1519-1523.

D. V. Seletskiy, M. P. Hasselbeck, J. G. Cederberg, A. Katzenmeyer, M. Toimil-Molares, F. Leonard, A. A. Talin, M. Sheik-Bahae, E cient terahertz emission from InAs nanowires, Phys. Rev. B 84 (2011) 115421.

V. N. Trukhin, A. S. Buyskikh, N. A. Kaliteevskaya, A. D. Bourauleuv, L. L. Samoilov, Y. B. Samsonenko, G. E. Cirlin, M. A. Kaliteevski, A. J. Gallant, Terahertz generation by GaAs nanowires, Applied Physics Letters 103 (2013) 72108_1-72108_4. doi:10. 1063/1.4818719.

J. M. Jornet, I. F. Akyildiz, Channel modeling and capacity analysis for electromag-netic wireless nano networks in the terahertz band, IEEE Transaction on Wireless Communications 10 (10) (October 2011) 3211-3221.

A. Z. Botros, A. D. Olver, Analysis of target response of FM-CW radar, IEEE Trans-action on Antennas And Propagation AP-34 (April 1986).

A. M. Aull, R. A. Gabel, T. J. Goblick, Real-time radar image understanding: A machineintelligence approach, The Lincoln Laboratory Journal 5 (2) (1992) 195-222.

S. K. Rogers, J. M. Colombi, C. E. Martin, J. C. Gainey, Kenh, T. Burns, D. W. Ruck, 800 M. Kabrisky, M. Oxley, Automatic target recognition using neural networks, Neural Networks 8 (January1995) 1153-1184.

L. M. Novak, G. J. Owirka, C. M. Netishen, Performance of a high-resolution polari-metric SAR automatic target recognition system, the Lincoln Laboratory Journal 6 (1) (1993) 11-24.

S. Haykin, C. Deng, Classi cation of radar clutter using neural networks, IEEE Trans-actions On Neural Networks 2 (6) 174-188.

Space-time versus frequency domain signal processing for 3d THz imaging, IEEE SEN-SORS Conference (2009) doi:978-1-4244-5335-1/09/.

P. Stavroulakis, Neuro-Fuzzy and Fuzzy-Neural Applications in Telecommunications, Springer Engineering online library, 2004.

K. Bhattacharyya, K. K. Sarma, Automatic target recognition (ATR) system using recurrent neural network (RNN) for pulse radar, International Journal of Computer Applications (0975 8887) 50 (23) (July 2012)

S. Chakrabarti, N. Bindal, K. Theagharajan, Robust radar target classifier using artificial neural networks, IEEE Transactions On Neural Networks 6 (May 1995) .

E. Avci, I. Turkoolu, M. Poyraz, Elazig, An intelligent target recognition system based on periodogram for pulsed radar systems, G.U. Journal of Science 18 (2) (2005) 259- 272.

S. Haykin, C. Deng, Classi cation of radar clutter using neural network, IEEE Transactions on Neural Networks 2 (6) (November 1991) .

D. E. Nelson, J. A. Starzyk, Advanced feature selection methodology for automatic target recognition, Proceedings of the 29th Southeastern Symposium on System Theory (SSST97), IEEE Computer Society Washington, DC, USA (1997) 24.

S. Haykin, Neural Networks, A Comprehensive Foundation, 2nd ed., Pearson Education, New Delhi, 2003.

I. Valova, G. Milano, K. Bowen, NatachaGueorguieva, Bridging the fuzzy, neural and evolutionary paradigms for automatic target recognition, Appl. Intel 35 (2011) 211-225, doi:10.1007/s10489-010-0213-8.

M. U. Shaika, V. Rao, Pulse compression techniques of phase coded waveforms in

radar, International Journal of Scienti c & Engineering Research 3 (8) (August 2012).

L. H. Newman, A new record for terahertz transmission engineers achieve amazing data rates in a once-inaccessible band, Posted 28 Nov 2013 j20:30 GMT.

M. Tonouchi, New frontier of terahertz technology, Terahertz Photonics Laboratory, 835 Institute of Laser Engineering, Osaka University (2006).

Darpa circuit achieves speeds of 1 trillion cycles per second, earns guinness world record (2014, October 31, retrieved 25 June 2015 from http://phys.org/news/2014-10-darpa-circuit-trillion-guinnessworld.html).

A. Morris, New terahertz device could strengthen security, McCORMICK News http://www.mccormick.northwestern.edu/news /articles/2014/11/new-terahertz device-could-strengthen-security.html (November 20, 2014).

M. Chin, Developed by UCLA team, new terahertz modulator could lead to more advanced medical and security imaging, SCIENCE + TECHNOLOGY, UCLA Newsroom (July 16, 2014).

Fraunhofer Gesellschaft, Inspecting letters with terahertz waves, Press Release www.fraunhofer.de/en/press/research-news /2014/may/inspecting-letters


Refbacks

  • There are currently no refbacks.


------------------------------------------------------------------------------------------------------------------------

The ADBU Journal of Engineering Technology (AJET)" ISSN:2348-7305

This journal is published under the terms of the Creative Commons Attribution (CC-BY) (http://creativecommons.org/licenses/)

Number of Visitors to this Journal: